1
|
Sounderarajan S, Seenivasan H, Velayudhaperumal Chellam P, Puchalapalli DSR, Ayothiraman S. Selective recovery of esterase from Trichoderma harzianum through adsorption: Insights on enzymatic catalysis, adsorption isotherms and kinetics. Int J Biol Macromol 2024; 277:134133. [PMID: 39074704 DOI: 10.1016/j.ijbiomac.2024.134133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
In recent years, numerous attempts have been made to develop a low-cost adsorbent for selectively recovering industrially important products from fermentation broth or complex mixtures. The current study is a novel attempt to selectively adsorb esterase from Trichoderma harzianum using cheap adsorbents like bentonite (BT), activated charcoal (AC), silicon dioxide (SiO2), and titanium dioxide (TiO2). AC had the highest esterase adsorption of 97.58% due to its larger surface area of 594.45 m3/g. SiO2 was found to have the highest selectivity over esterase, with an estimated purification fold of 7.2. Interestingly, the purification fold of 5.5 was found in the BT-extracted fermentation broth. The functional (FT-IR) and morphological analysis (SEM-EDX) were used to characterize the adsorption of esterase. Esterase adsorption on AC, SiO2, and TiO2 was well fitted by Freundlich isotherm, demonstrating multilayer adsorption of esterase. A pseudo-second-order kinetic model was developed for esterase adsorption in various adsorbents. Thermodynamic analysis revealed that adsorption is an endothermic process. AC has the lowest Gibbs free energy of -10.96 kJ/mol, which supports the spontaneous maximum adsorption of both esterase and protein. In the desorption study, the maximum recovery of esterase from TiO2 using sodium chloride was 41.34 %. Unlike other adsorbents, the AC-adsorbed esterase maintained its catalytic activity and stability, implying that it could be used as an immobilization system for commercial applications. According to the kinetic analysis, the overall rate of the reaction was controlled by reaction kinetics rather than external mass transfer resistance, as indicated by the Damkohler number.
Collapse
Affiliation(s)
- Sathieesh Sounderarajan
- Department of Chemical Engineering, National Institute of Technology Andhra Pradesh, Tadepalliguem, Andhra Pradesh, India; Biochemical Engineering Research Group, Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India
| | - Harshitha Seenivasan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | | | - Seenivasan Ayothiraman
- Department of Biotechnology National Institute of Technology Andhra Pradesh (Institute of National Importance, Govt. of India) Tadepalligudem, West Godavari Dist., Andhra Pradesh-534101, India.
| |
Collapse
|
2
|
Application of Synthesized Vanadium-Titanium Oxide Nanocomposite to Eliminate Rhodamine-B Dye from Aqueous Medium. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010176. [PMID: 36615371 PMCID: PMC9821815 DOI: 10.3390/molecules28010176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
In this study, a V@TiO2 nanocomposite is examined for its ability to eliminate carcinogenic Rhodamine (Rh-B) dye from an aqueous medium. A simple ultrasonic method was used to produce the nanosorbent. In addition, V@TiO2 was characterized using various techniques, including XRD, HRTEM, XPS, and FTIR. Batch mode studies were used to study the removal of Rh-B dye. In the presence of pH 9, the V@TiO2 nanocomposite was able to remove Rh-B dye to its maximum extent. A correlation regression of 0.95 indicated that the Langmuir model was a better fit for dye adsorption. Moreover, the maximum adsorption capacity of the V@TiO2 nanocomposite was determined to be 158.8 mg/g. According to the thermodynamic parameters, dye adsorption followed a pseudo-first-order model. Based on the results of the study, a V@TiO2 nanocomposite can be reused for dye removal using ethanol.
Collapse
|
3
|
Almufarij RS, Abdulkhair BY, Salih M, Alhamdan NM. Sweep-Out of Tigecycline, Chlortetracycline, Oxytetracycline, and Doxycycline from Water by Carbon Nanoparticles Derived from Tissue Waste. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203617. [PMID: 36296807 PMCID: PMC9610714 DOI: 10.3390/nano12203617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 05/27/2023]
Abstract
Pharmaceutical pollution has pervaded many water resources all over the globe. The propagation of this health threat drew the researchers' concern in seeking an efficient solution. This study introduced toilet paper waste as a precursor for carbon nanoparticles (CRNPs). The TEM results showed a particle size range of 30.2 nm to 48.1 nm, the BET surface area was 283 m2 g-1, and the XRD pattern indicated cubical-graphite crystals. The synthesized CRNPs were tested for removing tigecycline (TGCN), chlortetracycline (CTCN), oxytetracycline (OTCN), and doxycycline (DXCN) via the batch process. The adsorption equilibrium time for TGCN, DXCN, CTCN, and OTCN was 60 min, and the concentration influence revealed an adsorption capacity of 172.5, 200.1, 202.4, and 200.0 mg g-1, respectively. The sorption of the four drugs followed the PSFO, and the LFDM models indicated their high sorption affinity to the CRNPs. The adsorption of the four drugs fitted the multilayer FIM that supported the high-affinity claim. The removals of the four drugs were exothermic and spontaneous physisorption. The fabricated CRNPs possessed an excellent remediation efficiency for contaminated SW and GW; therefore, CRNPs are suggested for water remediation as low-cost sorbent.
Collapse
Affiliation(s)
- Rasmiah S. Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Babiker Y. Abdulkhair
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh 11623, Saudi Arabia
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| | - Mutaz Salih
- Department of Chemistry, College of Science and Humanities-Hurrymilla, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Nujud M. Alhamdan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
4
|
Low-Cost Carbon Nanoparticles for Removing Hazardous Organic Pollutants from Water: Complete Remediation Study and Multi-Use Investigation. INORGANICS 2022. [DOI: 10.3390/inorganics10090136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Continuous waste discharge into natural water resources in many countries is a severe global issue, and seeking an effective solution is a researcher’s concern. Herein, toilet paper waste was a low-cost precursor for preparing carbon nanoparticles (TPCNPs). The characterization of TPCNPs revealed a 30 nm to 50 nm particle size, a 264 m2 g−1 surface area, and a cubical graphite lattice XRD pattern. The TPCNPs were tested for removing malachite green (MG), indigo carmine (IC), rhodamine B (RB), and methylene blue (MB) dyes from water. The solution parameters were examined for the sorption process, and a pH of 5.0 suited the MB removal, while a pH of 6.0 was suitable for MG, IC, and RB. The effect of concentration investigation showed an adsorption capacity of 110.9, 64.8, 73.5, and 98 mg g−1 for MG, IC, RB, and MB, respectively. The sorption of the four dyes fitted the Langmuir isotherm model; it was exothermic and spontaneous. The water remediation was tested using groundwater and seawater samples (GW and SW) spiked with pollutants. It is worth mentioning that one treatment sufficed for the remediation of GW and SW contaminated by 5 mg L−1 concentration, while a double treatment was required for 10 mg L−1 pollution in both samples.
Collapse
|
5
|
Spontaneous Adsorption and Efficient Photodegradation of Indigo Carmine under Visible Light by Bismuth Oxyiodide Nanoparticles Fabricated Entirely at Room Temperature. INORGANICS 2022. [DOI: 10.3390/inorganics10050065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bismuth oxyiodide (BiOI) is a targeted material for its relative safety and photocatalytic activity under visible light. In this study, a successful simple and energy-saving route was applied to prepare BiOI through a sonochemical process at room temperature. The characterization of the prepared BiOI was conducted by physical means. The transmission electron microscope (TEM) image showed that the BiOI comprises nanoparticles of about 20 nm. Also, the surface area of the BiOI was found to be 34.03 m2 g−1 with an energy gap of 1.835 eV. The adsorption and photocatalytic capacities of the BiOI were examined for the indigo carmine dye (IC) as a model water-pollutant via the batch experiment methodology. The solution parameters were optimized, including pH, contact time, IC concentration, and temperature. Worth mentioning that an adsorption capacity of 185 mg·g−1 was obtained from 100 mg L−1 IC solution at 25 °C within 60 min as an equilibrium time. In addition, the BiOI showed a high degradation efficiency towards IC under tungsten lamb (80 W), where 93% was removed within 180 min, and the complete degradation was accomplished in 240 min. The fabricated BiOI nanoparticles completely mineralized the IC under artificial visible light, as indicated by the total organic carbon analysis.
Collapse
|
6
|
Karaman C, Karaman O, Show PL, Karimi-Maleh H, Zare N. Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. CHEMOSPHERE 2022; 290:133346. [PMID: 34929270 DOI: 10.1016/j.chemosphere.2021.133346] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Herein, it was aimed to optimize, model, and forecast the biosorption of Congo Red onto biomass-derived biosorbent. Therefore, the waste-orange-peels were processed to fabricate biomass-derived carbon, which was activated by ZnCl2 and modified with cetyltrimethylammonium bromide. The physicochemical properties of the biosorbents were explored by scanning electron microscopy and N2 adsorption/desorption isotherms. The effects of pH, initial dye concentration, temperature, and contact duration on the biosorption capacity were investigated and optimized by batch experimental process, followed by the kinetics, equilibrium, and thermodynamics of biosorption were modeled. Furthermore, various artificial neural network (ANN) architectures were applied to experimental data to optimize the ANN model. The kinetic modeling of the biosorption offered that biosorption was in accordance both with the pseudo-second-order and saturation-type kinetic model, and the monolayer biosorption capacity was calculated as 666.67 mg g-1 at 25 °C according to Langmuir isotherm model. According to equilibrium modeling, the Freundlich isotherm model was better fitted to the experimental data than the Langmuir isotherm model. Moreover, the thermodynamic modeling revealed biosorption took place spontaneously as an exothermic process. The findings revealed that the best ANN architecture trained with trainlm as the backpropagation algorithm, with tansig-purelin transfer functions, and 14 neurons in the single hidden layer with the highest coefficient of determination (R2 = 0.9996) and the lowest mean-squared-error (MSE = 0.0002). The well-agreement between the experimental and ANN-forecasted data demonstrated that the optimized ANN model can predict the behavior of the anionic dye biosorption onto biomass-derived modified carbon materials under various operation conditions.
Collapse
Affiliation(s)
- Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, 07070, Turkey
| | - Onur Karaman
- Akdeniz University, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya, 07070, Turkey
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, 17011, South Africa.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| |
Collapse
|
7
|
Abdulhamid MB, Hero JS, Zamora M, Gómez MI, Navarro MC, Romero CM. Effect of the biological functionalization of nanoparticles on magnetic CLEA preparation. Int J Biol Macromol 2021; 191:689-698. [PMID: 34547314 DOI: 10.1016/j.ijbiomac.2021.09.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/08/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Lipase immobilization using adsorption on magnetic nanoparticles, cross-linked enzyme aggregates (CLEA), and a combination of both techniques was investigated. Experimental designs were used for the optimization of the immobilization observing that the pH and ionic strength play a principal role during the lipase immobilization and its activity. For adsorption on magnetic nanoparticles and CLEA synthesis the optimal condition was pH and 100 mM. Besides, during the CLEA synthesis, glutaraldehyde concentration showed to be a significant effect on the enzyme activity. A comparison between a magnetic CLEA prepared with (Lip@mCLEA) and without (mCLEA) biological functionalized magnetic nanoparticles was made observing that the use of functionalized support showed the best performance activity. All biocatalytic systems developed gives to the enzyme thermal stability between 45 and 70 °C, being Lip@mCLEA the more stable biocatalyst. Similar behavior was observed at different pH, where both Lip@mCLEA and mCLEA showed stability at a range of pH 5 to 8. The immobilized biocatalysts showed the same affinity of the subtract that the free enzyme suggested that the enzyme structure not modified the active site. The combination of both types of immobilization show evidenced the importance of the biological functionalization of the support when magnetic CLEA is produced.
Collapse
Affiliation(s)
- María Belén Abdulhamid
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina
| | - Johan Sebatian Hero
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán, Argentina
| | - Mariana Zamora
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina
| | - María Inés Gómez
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina
| | - María Carolina Navarro
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina.
| | - Cintia Mariana Romero
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina.
| |
Collapse
|
8
|
Elamin MR, Abdulkhair BY, Algethami FK, Khezami L. Linear and nonlinear investigations for the adsorption of paracetamol and metformin from water on acid-treated clay. Sci Rep 2021; 11:13606. [PMID: 34193935 PMCID: PMC8245496 DOI: 10.1038/s41598-021-93040-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Natural clays are considered a safe, low-cost, and sound sorbent for some pharmaceutical and body care products from water. Metformin (MF) and paracetamol (PA) are of the most consumable drugs worldwide. A portion of natural clay was treated with distilled water, and another part was treated with hydrochloric acid. The water-treated clay (WTC) and the acid-treated clay (ATC) were characterized by scanning electron microscopy-energy dispersive spectroscopy, X-ray diffraction, Fourier transforms infrared spectroscopy, and nitrogen adsorption isotherm. Batch experiments were employed to investigate the influence of contact time and solution parameters on the adsorption of PA and MF on WTC and ATC. 30 min attained the equilibrium for all sorbent-sorbate systems. Both sorbents fitted the pseudo-second-order kinetic model with a preference to the nonlinear fitting, and the mechanism of adsorption partially fitted the liquid-film diffusion model. The PA and MF adsorption on WTC and ATC fitted the Freundlich model in preference to nonlinear fitting. The adsorption of pollutants on both sorbents was spontaneous, exothermic, and physisorption in nature. Even at low concentrations, both WTC and ATC showed efficiency above 80% in removing PA and MF from tab water, groundwater, and Red seawater. These findings nominated natural clay as an alternative to the costly nanomaterials as sorbents for removing pharmaceutical contaminants from water.
Collapse
Affiliation(s)
- Mohamed R Elamin
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia
- Industrial Research and Consultancy Center (IRCC), Khartoum North, Sudan
| | - Babiker Y Abdulkhair
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia.
- College of Science, Chemistry Department, Sudan University of Science and Technology (SUST), Khartoum, Sudan.
| | - Faisal K Algethami
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia
| | - L Khezami
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Alsar Z, Duskinova B, Insepov Z. New Sorption Properties of Diatomaceous Earth for Water Desalination and Reducing Salt Stress of Plants. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2020. [DOI: 10.18321/ectj955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A new practical application of the unique sorption abilities of Diatomaceous Earth (DE) or diatomite, a widely accessible and promising natural mineral, has been studied. By analyzing aqueous extracts of natural diatomite, it was shown that DE probably contains various inorganic salts, which are released into the solution in the form of ions, such as Cl-, SO42-, Na+, Ca2+, Mg2+, K+ and, apparently, others. Diatomite was able to exchange these ions with the environment, exhibiting the properties of a natural ion exchanger. Studying the kinetics of ion release from diatomite showed that the ion desorption process continues for 4‒5 h until the surrounding solution is saturated with ions, after which it is dynamically balanced by the sorption process. In order to significantly reduce the ionic content of diatomite, DE samples were processed in a technologically simple and environmentally friendly way. Thus, as a result of deionization, the content of ions released from diatomite significantly decreases. Deionized diatomite was applied to study the adsorption of sodium and chloride ions from aqueous solutions. The maximum adsorption was 50.2 mg/g, and the maximum degree of extraction, corresponding to the concentration range of 5‒100 mg/l, was 53.9%. The observed effect was also applicable for increasing the resistance of plants to salt stress, improving the germination and growth of wheat samples. The developed method can be used in the manufacturing of filters for water desalination, both drinking and technological; in ecology; in agriculture to reduce salt stress of plants, as well as for the restoration of lands contaminated by salt.
Collapse
|
10
|
The Kinetic Parameters of Adsorption of Enzymes Using Carbon-Based Materials Obtained from Different Food Wastes. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00635-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Çalımlı MH, Demirbaş Ö, Aygün A, Alma MH, Nas MS, Khan A, Asiri AM, Şen F. Equilibrium, Kinetics and Thermodynamics of Bovine Serum Albumin from Carbon Based Materials Obtained from Food Wastes. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00633-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Demirbaş Ö, Çalımlı MH, Demirkan B, Alma MH, Nas MS, Khan A, Asiri AM, Şen F. Thermodynamics, Kinetics, and Adsorption Properties of Biomolecules onto Carbon-Based Materials Obtained from Food Wastes. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00628-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|