1
|
Nagarajaiah S, Shivanna Giresha A, Gopala Krishna P, Manikrao Gadewar M, Praveen M, Nanda N, Urs D, Krishnappa Dharmappa K, Mutta Nagabhushana B, Rao S, Mahadeva Swamy M, Venkatesh Yatish K. Anti-oncogenic Potential and Inflammation Modulatory Response of Green Synthesized Biocompatible Silver Nanoparticles. Chem Biodivers 2024; 21:e202301533. [PMID: 38156969 DOI: 10.1002/cbdv.202301533] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
This study presents a novel approach to synthesizing silver nanoparticles (Ag NPs) using a solution combustion synthesis (SCS) method with Catharanthus roseus (C. roseus) leaf extract. The NPs were thoroughly characterized through X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), Transmission electron microscopy (TEM), and Selected area electron diffraction (SAED), elucidating their crystal structure. Notably, the synthesized Ag NPs exhibited a significant dose-dependent decline in viability of the MDA-MB 231 breast cancer cell line, with an IC50 value of 13.3 μg/mL, underscoring their potential as potent anticancer agent. Beyond cytotoxicity, the study pioneers an investigation into the biocompatibility of Ag NPs by blood hemolsysis, providing critical insights into their safety and biomedical applicability. Furthermore, this research uncovers a distinctive facet of Ag NPs, revealing their inhibitory effects on the inflammatory enzyme secretory phospholipase A2 (sPLA2), a recognized biomarker for breast cancer. The demonstrated in vitro and in vivo inhibition of sPLA2 highlights the multifaceted potential of Ag NPs in not only targeting cancer cells but also modulating inflammatory responses associated with breast cancer, positioning the study at the forefront of advancements in nanomedicine and cancer therapeutics.
Collapse
Affiliation(s)
- Shobha Nagarajaiah
- Department of Chemistry, Maharani's Science College for Women, Maharani Cluster University, 560 001, Bengaluru, India
| | - Aladahalli Shivanna Giresha
- Department of Biochemistry, Jain (Deemed-to-be University), School of Science, JC Road, 560 027, Bangalore, India
| | - Prashanth Gopala Krishna
- Research and Development Center, Department of Chemistry, Sir M. Visvesvaraya Institute of Technology, 562 157, Bengaluru, India
| | - Manoj Manikrao Gadewar
- Department of Pharmacology, School of Medical and Allied Sciences, KR Mangalam University, 122 103, Gurgaon, India
| | - Manjappa Praveen
- Centre for Advanced Materials Technology (CAMT), M.S Ramaiah Institute of Technology, 560 054, Bengaluru, India
| | - Nagappa Nanda
- Department of Chemistry, BMS College of Engineering, 560 019, Bengaluru, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Centre, Chikka Aluvara, 571 232, Kodagu, India
| | - Kattepura Krishnappa Dharmappa
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Centre, Chikka Aluvara, 571 232, Kodagu, India
| | | | - Srilatha Rao
- Department of Chemistry, Nitte Meenakshi Institute of Technology, 560 064, Bengaluru, India
| | - Mallanna Mahadeva Swamy
- Department of PG Chemistry, JSS College of Arts Commerce and Science, 570 025, Mysuru, India
| | | |
Collapse
|
2
|
Krishna PG, Chandra Mishra P, Naika MM, Gadewar M, Ananthaswamy PP, Rao S, Boselin Prabhu SR, Yatish KV, Nagendra HG, Moustafa M, Al-Shehri M, Jha SK, Lal B, Stephen Santhakumari SM. Photocatalytic Activity Induced by Metal Nanoparticles Synthesized by Sustainable Approaches: A Comprehensive Review. Front Chem 2022; 10:917831. [PMID: 36118313 PMCID: PMC9479337 DOI: 10.3389/fchem.2022.917831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022] Open
Abstract
Nanotechnology is a fast-expanding area with a wide range of applications in science, engineering, health, pharmacy, and other fields. Among many techniques that are employed toward the production of nanoparticles, synthesis using green technologies is the simplest and environment friendly. Nanoparticles produced from plant extracts have become a very popular subject of study in recent decades due to their diverse advantages such as low-cost synthesis, product stability, and ecofriendly protocols. These merits have prompted the development of nanoparticles from a variety of sources, including bacteria, fungi, algae, proteins, enzymes, etc., allowing for large-scale production with minimal contamination. However, nanoparticles obtained from plant extracts and phytochemicals exhibit greater reduction and stabilization and hence have proven the diversity of properties, like catalyst/photocatalyst, magnetic, antibacterial, cytotoxicity, circulating tumor deoxy ribo nucleic acid (CT-DNA) binding, gas sensing, etc. In the current scenario, nanoparticles can also play a critical role in cleaning wastewater and making it viable for a variety of operations. Nano-sized photocatalysts have a great scope toward the removal of large pollutants like organic dyes, heavy metals, and pesticides in an eco-friendly and sustainable manner from industrial effluents. Thus, in this review article, we discuss the synthesis of several metal nanoparticles using diverse plant extracts, as well as their characterization via techniques like UV–vis (ultraviolet–visible), XRD (X-ray diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), FTIR (Fourier transform infrared spectroscopy), etc., and catalytic activity on various hazardous systems.
Collapse
Affiliation(s)
- Prashanth Gopala Krishna
- Department of Chemistry, Sir M. Visvesvaraya Institute of Technology, Affiliated to Visvesvaraya Technological University, Bengaluru, India
- *Correspondence: Prashanth Gopala Krishna, , ; Saurabh Kumar Jha,
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Mutthuraju Mahadev Naika
- Department of Chemistry, Sai Vidya Institute of Technology, Affiliated to Visvesvaraya Technological University, Bengaluru, India
| | - Manoj Gadewar
- Department of Pharmacology, School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | | | - Srilatha Rao
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Affiliated to Visvesvaraya Technological University, Bengaluru, India
| | | | | | - Holenarasipura Gundurao Nagendra
- Department of Bio Technology, Sir M. Visvesvaraya Institute of Technology, Affiliated to Visvesvaraya Technological University, Bengaluru, India
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- *Correspondence: Prashanth Gopala Krishna, , ; Saurabh Kumar Jha,
| | - Bharat Lal
- Department of Pharmaceutics, School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | | |
Collapse
|
3
|
Gowthambabu V, Balamurugan A, Dhivya Bharathy R, Satheeshkumar S, Kanmani SS. ZnO nanoparticles as efficient sunlight driven photocatalyst prepared by solution combustion method involved lime juice as biofuel. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119857. [PMID: 33933942 DOI: 10.1016/j.saa.2021.119857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
We have prepared high purity Zinc oxide (ZnO) nanoparticles (NPs) by solution combustion synthesis (SCS) method with the aid of lime juice extract. From powder X-ray diffraction (XRD) spectra, it is observed that the ZnO NPs possess single phase, hexagonal wurzite structure with sharp intense peak at (101) plane, agrees with the planes of SAED pattern. Further, the crystallite size is found to be around 18 nm. UV-Vis analysis shows strong UV absorbance band at 381 nm and PL measurements reveals the presence of strong UV emission at 347 nm along with few weak visible emissions. Optical studies infer the existence of lower recombination rate of electron-hole pair, influence the photocatalytic activity of ZnO. From XPS measurements, presence of oxygen rich states on surface are also confirmed (O 1 s states). The degradation performance and reusability of four different dyes (methylene blue (MB), methyl orange (MO), rhodamine B (RhB), Pararosaniline (PRA)) under UV and sunlight irradiations are carried out to illustrate the photo-catalytic activity in presence of a catalyst like ZnO NPs. Comparatively, about 98.8% of PRA and MB dyes are photodegraded at 90 and 75 min of sunlight irradiation, respectively. Among these two, PRA dye shows maximum degradation performance with shorter irradiation time along with good stability, which can be extend very well to minimize the pollution issues happening in society especially, industrial wastes.
Collapse
Affiliation(s)
- V Gowthambabu
- Department of Physics, Dr. N. G. P. Arts and Science College, Coimbatore - 641048, Tamilnadu, India
| | - A Balamurugan
- Department of Physics, Government Arts and Science College, Avinashi - 641654, Tamilnadu, India
| | - R Dhivya Bharathy
- Department of Physics, Dr. N. G. P. Arts and Science College, Coimbatore - 641048, Tamilnadu, India
| | - S Satheeshkumar
- Centre for Nano Science and Technology, K.S. Rangasamy College of Technology, Tiruchengode -637215, Tamilnadu, India
| | - S S Kanmani
- Department of Physics, Dr. N. G. P. Arts and Science College, Coimbatore - 641048, Tamilnadu, India.
| |
Collapse
|