1
|
Al-Tameemi AI, Masarudin MJ, Rahim RA, Mizzi R, Timms VJ, Isa NM, Neilan BA. Eco-friendly zinc oxide nanoparticle biosynthesis powered by probiotic bacteria. Appl Microbiol Biotechnol 2025; 109:32. [PMID: 39878901 PMCID: PMC11779794 DOI: 10.1007/s00253-024-13355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 01/31/2025]
Abstract
The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater. Microorganisms from wastewater tolerate harmful elements and enzymatically convert toxic heavy metals into eco-friendly materials. These probiotic bacteria are instrumental in the synthesis of ZnO NPs and exhibit remarkable antimicrobial properties with diverse industrial applications. As the challenge of drug-resistant pathogens escalates, innovative strategies for combating microbial infections are essential. This review explores the intersection of nanotechnology, microbiology, and antibacterial resistance, highlighting the importance of selecting suitable probiotic bacteria for synthesizing ZnO NPs with potent antibacterial activity. Additionally, the review addresses the biofunctionalization of NPs and their applications in environmental remediation and therapeutic innovations, including wound healing, antibacterial, and anticancer treatments. Eco-friendly NP synthesis relies on the identification of these suitable microbial "nano-factories." Targeting probiotic bacteria from wastewater can uncover new microbial NP synthesis capabilities, advancing environmentally friendly NP production methods. KEY POINTS: • Innovative strategies are needed to combat drug-resistant pathogens like MRSA. • Wastewater-derived probiotic bacteria are an eco-friendly method for ZnO synthesis. • ZnO NPs show significant antimicrobial activity against various pathogens.
Collapse
Affiliation(s)
- Ahmed Issa Al-Tameemi
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- College of Dentistry, Al-Iraqia University, 10053 Al Adhamiya, Baghdad, Iraq
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rachel Mizzi
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Verlaine J Timms
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
2
|
Saddiqa A, Faisal Z, Akram N, Afzaal M, Saeed F, Ahmed A, Almudaihim A, Touqeer M, Ahmed F, Asghar A, Saeed M, Hailu GG. Algal pigments: Therapeutic potential and food applications. Food Sci Nutr 2024; 12:6956-6969. [PMID: 39479711 PMCID: PMC11521690 DOI: 10.1002/fsn3.4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Algae-derived natural compounds have shown significant potential in treating various health conditions, including cancer, obesity, diabetes, and inflammation. Recent advancements in nanotechnology have enabled the development of precise drug delivery systems and diagnostic tools utilizing these compounds. Central to this innovation are the vibrant pigments found in algae chlorophylls, carotenoids, and phycobiliproteins which not only impart color but also possess notable nutritional, medicinal, and antioxidant properties. These pigments are extensively used in supplements and the food industry for their health benefits. Emerging research highlights the role of algal pigments in promoting gut health by modulating gut microbiota. This review comprehensively examines the therapeutic benefits of algae, recent progress in algal-derived nanoparticle technology, and the synergistic effects of algae and their pigments on gut health. Novel insights and recent data underscore the transformative potential of algal compounds in modern medicine and nutrition.
Collapse
Affiliation(s)
- Ayesha Saddiqa
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Zargham Faisal
- Department of Human Nutrition and DieteticsIqra UniversityKarachiPakistan
| | - Noor Akram
- Food Safety & Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Abeer Almudaihim
- Department of Clinical NutritionKing Saud Bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Muhammad Touqeer
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Aasma Asghar
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Mubarra Saeed
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | | |
Collapse
|
3
|
Bharathi VU, Thambidurai S. Phytofabrication of biocompatible chitosan-based ZnO nanocomposite aided by Cissus quadrangularis extract enriched with antimicrobial and antioxidant potential. Int J Biol Macromol 2024; 271:132677. [PMID: 38820903 DOI: 10.1016/j.ijbiomac.2024.132677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
A dynamic chitosan-based ZnO nanocomposite (NC) was fabricated via a cost-effective formulation and an eco-friendly procedure utilizing Cissus quadrangularis (CQ) plant extract. This study investigates the antimicrobial and antioxidant properties, together with the cytocompatibility aspects of chitosan-incorporated ZnO nanocomposite (CS-ZnO/CQE). The formation and structural morphology of the nanocomposites were examined using FTIR, UV-Vis, XRD, XPS, BET, TGA, SEM, and TEM techniques. The antibacterial test results demonstrated the greatest inhibitory zone diameter against S. aureus (19 ± 1.00 mm) and E. coli (17 ± 1.05 mm), assessed through agar well diffusion method. Also, the composite exhibited a DPPH inhibition rate of 78.7 ± 0.34 %, indicating its high effectiveness in neutralizing free radicals. In addition, the nanocomposite exhibited less toxicity towards human erythrocytes, HDF and HEK-293 cells as a result of the biocompatibility exhibited by CS, ZnO, and CQ plant extract. Likewise, it has exceptional cell migratory capacity and possesses biodegradability factors. These observations strongly suggest the potential of CS-ZnO/CQE as a cutting-edge antibacterial and antioxidant agent to be implemented in the medical sector.
Collapse
Affiliation(s)
- V Umaiya Bharathi
- Bio-nanomaterials Research Lab, Department of Industrial Chemistry, School of chemical Sciences, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - S Thambidurai
- Bio-nanomaterials Research Lab, Department of Industrial Chemistry, School of chemical Sciences, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
4
|
Rehman FU, Paker NP, Khan M, Naeem M, Munis MFH, Rehman SU, Chaudhary HJ. Bio-fabrication of zinc oxide nanoparticles from Picea smithiana and their potential antimicrobial activities against Xanthomonas campestris pv. Vesicatoria and Ralstonia solanacearum causing bacterial leaf spot and bacterial wilt in tomato. World J Microbiol Biotechnol 2023; 39:176. [PMID: 37115313 DOI: 10.1007/s11274-023-03612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Due to an inevitable disadvantage of chemical or physical synthesis routes, biosynthesis approach to nanoparticles, especially metallic oxide is attractive nowadays. Metallic oxides nanoparticles present a new approach to the control of plant pathogens. ZnO nanoparticles (ZNPs) have very important role in phytopathology. In current study, biosynthesized ZNPs were tested against two devastating bacterial pathogens including Xanthomonas campestris pv. vesicatoria and Ralstonia solanacearum causing bacterial leaf spot and bacterial wilt in tomato. ZNPs were produced using a new extract from the plant Picea smithiana using an environmentally friendly, cost-effective and simple procedure. Zinc acetate was added to P. smithiana extract, stirred and heated to 200 °C. The white precipitation at the bottom were clear indication of synthesis of nanoparticles, which were further dried by subjecting them at 450 °C. X-ray diffraction pattern determined that the ZNPs had a crystallite size of about 26 nm, Fourier transform infrared spectroscopy indicated a peak between 450 and 550 cm-1 and the particle size estimated by dynamic light scattering was about 25 nm on average. Scanning electron microscopic analysis indicated that the particles were hexagonal in shape 31 nm in diameter. Antibacterial tests showed ZNPs synthesized by P. smithiana resulted in clear inhibition zones of 20.1 ± 1.5 and 18.9 ± 1.5 mm and 44.74 and 45.63% reduction in disease severity and 78.40 and 80.91% reduction in disease incidence in X. compestris pv. vesicatoria and R. solanacearum respectively at concentration of 100 µg/ml. Our findings reveal that the concentration of ZNPs was important for their efficient antibacterial activity. Overall, the biosynthesized ZNPs have been found to have effective antimicrobial activities against bacterial wilt and bacterial leaf spot in tomato.
Collapse
Affiliation(s)
- Fazal Ur Rehman
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Najeeba Paree Paker
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Mohsin Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Naeem
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shafiq Ur Rehman
- Department of Botany, University of Okara, Okara, 56300, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
5
|
Sampath S, Madhavan Y, Muralidharan M, Sunderam V, Lawrance AV, Muthupandian S. A review on algal mediated synthesis of metal and metal oxide nanoparticles and their emerging biomedical potential. J Biotechnol 2022; 360:92-109. [DOI: 10.1016/j.jbiotec.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
|
6
|
Akintelu SA, Olabemiwo OM, Ibrahim AO, Oyebamiji JO, Oyebamiji AK, Olugbeko SC. Biosynthesized nanoparticles as a rescue aid for agricultural sustainability and development. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Alshameri AW, Owais M, Altaf I, Farheen S. Rumex nervosus mediated green synthesis of silver nanoparticles and evaluation of its in vitro antibacterial, and cytotoxic activity. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Sportelli MC, Gaudiuso C, Volpe A, Izzi M, Picca RA, Ancona A, Cioffi N. Biogenic Synthesis of ZnO Nanoparticles and Their Application as Bioactive Agents: A Critical Overview. REACTIONS 2022; 3:423-441. [DOI: 10.3390/reactions3030030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Zinc oxide is a safe material for humans, with high biocompatibility and negligible cytotoxicity. Interestingly, it shows exceptional antimicrobial activity against bacteria, viruses, fungi, etc., especially when reduced to the nanometer size. As it is easily understandable, thanks to its properties, it is at the forefront of safe antimicrobials in this pandemic era. Besides, in the view of the 2022 European Green Deal announced by the European Commission, even science and nanotechnology are moving towards “greener” approaches to the synthesis of nanoparticles. Among them, biogenic ZnO nanoparticles have been extensively studied for their biological applications and environmental remediation. Plants, algae, fungi, yeast, etc., (which are composed of naturally occurring biomolecules) play, in biogenic processes, an active role in the formation of nanoparticles with distinct shapes and sizes. The present review targets the biogenic synthesis of ZnO nanoparticles, with a specific focus on their bioactive properties and antimicrobial application.
Collapse
Affiliation(s)
- Maria Chiara Sportelli
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
| | - Caterina Gaudiuso
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Annalisa Volpe
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Margherita Izzi
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| | - Antonio Ancona
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
9
|
Electroless Deposits of ZnO and Hybrid ZnO/Ag Nanoparticles on Mg-Ca0.3 Alloy Surface: Multiscale Characterization. COATINGS 2022. [DOI: 10.3390/coatings12081109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ZnO and hybrid of ZnO/Ag structures in the nanometer size were electroless deposited on the Mg-Ca0.3 alloy surface, achieved from aqueous solutions (10−3 M at 21 °C) of ZnO (suspension), Zn(NO3)2 and AgNO3. The surface characterization of the deposits was carried out by Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), X-Ray Photoelectron Spectroscopy (XPS), Fourier transform infrared (FTIR), UV-Visible and Raman spectroscopy. The nanoparticles (NPs) area size distribution analysis revealed that the average of ZnO-NPs was ~85 nm. Likewise, the Ag-NPs of electroless deposits had an average area size of ~100 nm and nucleated in the vicinity of ZnO-NPs as Ag+ ions have been attracted by the negatively charged O2− atoms of the Zn-O dipole. The ZnO-NPs had the wurtzite structure, as indicated by Raman spectroscopy analysis and XRD complementary analysis. The UV-Visible spectroscopy analysis gave a peak at ~320 nm associated with the decrease in the imaginary part (k) of the refractive index of Ag-NPs. On the Mg-Ca0.3 surface, MgO, Mg(OH)2 and MgCO3 are present due to the Mg-matrix. XRD spectra of Ag-NPs indicated the presence of planes arranged with the FCC hexagonal structure. The reported hybrid ZnO/Ag electroless deposits of NPs are of interest for temporary implant devices, providing antibacterial properties to Mg-Ca0.3 surface, a widely used biodegradable material.
Collapse
|
10
|
Microbial Mediated Synthesis of Zinc Oxide Nanoparticles, Characterization and Multifaceted Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractNanoparticles have gained considerable importance compared to bulk counterparts due to their unique properties. Due to their high surface to volume ratio and high reactivity, metallic and metal-oxide nanostructures have shown great potential applications. Among them, zinc oxide nanoparticles (ZnONPs) have gained tremendous attention attributed to their unique properties such as low toxicity, biocompatibility, simplicity, easy fabrication, and environmental friendly. Remarkably, ZnONPs exhibit optical, physical, antimicrobial, anticancer, anti-inflammatory and wound healing properties. These nanoparticles have been applied in various fields such as in biomedicine, biosensors, electronics, food, cosmetic industries, textile, agriculture and environment. The synthesis of ZnONPs can be performed by chemical, physical and biological methods. Although the chemical and physical methods suffer from some disadvantages such as the involvement of high temperature and pressure conditions, high cost and not environmentally friendly, the green synthesis of ZnONPs offers a promising substitute to these conventional methods. On that account, the microbial mediated synthesis of ZnONPs is clean, eco-friendly, nontoxic and biocompatible method. This paper reviews the microbial synthesis of ZnONPs, parameters used for the optimization process and their physicochemical properties. The potential applications of ZnONPs in biomedical, agricultural and environmental fields as well as their toxic aspects on human beings and animals have been reviewed.
Collapse
|
11
|
Hasan IMA, Tawfik AR, Assaf FH. GC/MS screening of buckthorn phytochemicals and their use to synthesize ZnO nanoparticles for photocatalytic degradation of malachite green dye in water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:664-684. [PMID: 35100146 DOI: 10.2166/wst.2021.638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) were biosynthesized. According to gas chromatography/mass spectrometry analysis, chalcone, the main phytochemical, is probably complexed with Zn ions that are then oxidized to ZnO NPs by atmospheric O2 during heating. The ZnO NPs were characterized by thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller surface area analysis. Sphere-like ZnO NPs were formed with 11 nm mean crystallite size, 5.2 m2 g-1 surface area, and 0.02 cm3 g-1 total pore volume. The synthesized ZnO showed excellent photocatalytic degradation (96.5±0.24% in 1 hour at 25 °C) of malachite green (MG) in aqueous solutions under ultraviolet light at optimum conditions; pH 10, MG initial concentration of 20 mg L-1, and ZnO dose of 1.5 g L-1. Also, ZnO showed very good reusability (92.9± 0.2% after five runs). The experimental data obeyed pseudo-first-order kinetics (R2 = 0.92). The photocatalysis process was dependent on the following species in the order: OH. > electron/positive hole pairs > O2.-. Moreover, photodegradation efficiency decreased in the presence of CO32-, HCO3-, and Cl-, but increased in the presence of NO3- and SO42- ions. Thus, the green synthesized ZnO NPs can be applied as an efficient photocatalyst for the removal of MG from aqueous media.
Collapse
Affiliation(s)
- Ibrahem M A Hasan
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt E-mail:
| | - Ahmed R Tawfik
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt E-mail:
| | - Fawzy H Assaf
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt E-mail:
| |
Collapse
|