1
|
Hurwitz LM, Shadyab AH, Tabung FK, Anderson GL, Saquib N, Wallace RB, Wild RA, Pfeiffer RM, Xu X, Trabert B. Analgesic Use and Circulating Estrogens, Androgens, and Their Metabolites in the Women's Health Initiative Observational Study. Cancer Prev Res (Phila) 2022; 15:173-183. [PMID: 34893532 PMCID: PMC8898279 DOI: 10.1158/1940-6207.capr-21-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
Though studies have observed inverse associations between use of analgesics (aspirin, NSAIDs, and acetaminophen) and the risk of several cancers, the potential biological mechanisms underlying these associations are unclear. We investigated the relationship between analgesic use and serum concentrations of estrogens, androgens, and their metabolites among postmenopausal women to provide insights on whether analgesic use might influence endogenous hormone levels, which could in turn influence hormone-related cancer risk. The study included 1,860 postmenopausal women from two case-control studies nested within the Women's Health Initiative Observational Study. Analgesic use was reported at study baseline. Fifteen estrogens and estrogen metabolites and 12 androgens and androgen metabolites were quantified in baseline serum by LC/MS-MS. Linear regression with inverse probability weighting, stratified by menopausal hormone therapy (MHT) use, was used to estimate adjusted geometric mean concentrations of each hormone by analgesic use. Among women not currently using MHT (n = 951), low-dose aspirin (<100 mg) use was associated with a higher serum concentration of estrone, estradiol, and 2, 4, and 16 hydroxylated metabolites. Use of regular-dose aspirin (≥100 mg), non-aspirin NSAIDs, and acetaminophen was not associated with serum concentrations of estrogens, androgens, or their metabolites. This study highlights the importance of examining aspirin use by dose and suggests that low-dose aspirin may influence endogenous estrogen concentrations. PREVENTION RELEVANCE This study explores a potential pathway by which analgesic medications such as aspirin may prevent hormone-related cancers. The findings support a positive association between low-dose aspirin use and endogenous estrogens, indicating that further elucidation of the interplay between low-dose aspirin, estrogen concentrations, and cancer risk is needed.
Collapse
Affiliation(s)
- Lauren M. Hurwitz
- Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA
| | - Fred K. Tabung
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center
| | | | - Nazmus Saquib
- Research Unit, College of Medicine, Sulaiman AlRajhi University
| | - Robert B. Wallace
- Department of Epidemiology, University of Iowa College of Public Health
| | - Robert A. Wild
- Department of Obstetrics and Gynecology, University of Oklahoma College of Medicine
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Xia Xu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute
| |
Collapse
|
2
|
Houghton LC, Sisti JS, Hankinson SE, Xie J, Xu X, Hoover RN, Eliassen AH, Ziegler RG. Estrogen Metabolism in Premenopausal Women Is Related to Early Life Body Fatness. Cancer Epidemiol Biomarkers Prev 2018; 27:585-593. [PMID: 29511040 PMCID: PMC5932230 DOI: 10.1158/1055-9965.epi-17-0595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/04/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Estrogen metabolism in premenopausal women may be related to early life body fatness.Methods: Premenopausal women participating in the Nurses' Health Study II recalled their body fatness at ages 5, 10, and 20 years using a validated 9-level pictogram. Fifteen estrogens and estrogen metabolites (EM) were measured using LC/MS-MS in luteal phase urines from 603 women ages 32-54 years. Geometric means of individual EM, metabolic pathway groups, and pathway ratios were examined by body fatness categories using linear mixed models.Results: Body fatness at each age was inversely associated with adult concentrations of all EM combined, parent estrogens (estrone, estradiol), and the 2-hydroxylation pathway. Women in the top (vs. bottom) category of body fatness at age 10 had 21% lower levels of all EM (Ptrend = 0.003), 24% lower parent estrogens (Ptrend = 0.002), and 36% lower 2-pathway (Ptrend = 0.0003). Body fatness at age 10 was inversely associated with 2-catechols (35% lower, Ptrend = 0.0004) and 2-methylated catechols (30% lower, Ptrend = 0.002). After adjusting for premenopausal body mass index (BMI), these associations remained inverse but were attenuated; only parent estrogens remained statistically significant (21% lower, Ptrend = 0.01). Body fatness at ages 5 and 20 were similarly, but more weakly, associated with estrogen pathways.Conclusions: Estimates of body fatness during early life were inversely associated with premenopausal levels of all EM combined, parent estrogens, and 2-pathway estrogen metabolites. These relationships were not fully explained by adult BMI.Impact: These findings inform investigations of diseases linked to early life body fatness and estrogen metabolism. Cancer Epidemiol Biomarkers Prev; 27(5); 585-93. ©2018 AACR.
Collapse
Affiliation(s)
- Lauren C Houghton
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York.
| | - Julia S Sisti
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Susan E Hankinson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts
| | | | - Xia Xu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert N Hoover
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Regina G Ziegler
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York
| |
Collapse
|
3
|
Abstract
Chemotherapy and hormonal therapy have significantly decreased breast cancer mortality, although with considerable side effects and financial costs. In the USA, over three million women are living after a breast cancer diagnosis and are eager for new treatments that are low in toxicity and cost. Multiple observational studies have reported improved breast cancer survival with regular aspirin use. Furthermore, pooled data from five large randomized trials of aspirin for cardiovascular disease showed that subjects on aspirin had decreased risk of cancer mortality and decreased risk of metastatic cancer. Although the potential mechanism for aspirin preventing breast cancer is not known, possible pathways may involve platelets, inflammation, cyclooxygenase (COX) 2, hormones, or PI3 kinase. This review article summarizes the current epidemiologic and clinical trial evidence as well as possible underlying mechanisms that justify current phase III randomized trials of aspirin to improve breast cancer survival.
Collapse
|
4
|
Kennon-McGill S, McGill MR. Extrahepatic toxicity of acetaminophen: critical evaluation of the evidence and proposed mechanisms. J Clin Transl Res 2018. [PMID: 30895271 PMCID: PMC5815839 DOI: 10.18053/jctres.03.201703.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Research on acetaminophen (APAP) toxicity over the last several decades has focused on the pathophysiology of liver injury, but increasingly attention is paid to other known and possible adverse effects. It has been known for decades that APAP causes acute kidney injury, but confusion exists regarding prevalence, and the mechanisms have not been well investigated. More recently, evidence for pulmonary, endocrine, neurological, and neurodevelopmental toxicity has been reported in a number of published experimental, clinical, and epidemiological studies, but the quality of those studies has varied. It is important to view those data critically due to implications for regulation and clinical practice. Here, we review evidence and proposed mechanisms for extrahepatic adverse effects of APAP and weigh weaknesses and strengths in the available data.
Collapse
Affiliation(s)
- Stefanie Kennon-McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States.,Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
5
|
Kristensen DM, Mazaud-Guittot S, Gaudriault P, Lesné L, Serrano T, Main KM, Jégou B. Analgesic use - prevalence, biomonitoring and endocrine and reproductive effects. Nat Rev Endocrinol 2016; 12:381-93. [PMID: 27150289 DOI: 10.1038/nrendo.2016.55] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Paracetamol and NSAIDs, in particular acetylsalicylic acid (aspirin) and ibuprofen, are among the most used and environmentally released pharmaceutical drugs. The differences in international trends in the sale and consumption of mild analgesics reflect differences in marketing, governmental policies, habits, accessibility, disease patterns and the age distribution of each population. Biomonitoring indicates ubiquitous and high human exposure to paracetamol and to salicylic acid, which is the main metabolite of acetylsalicylic acid. Furthermore, evidence suggests that analgesics can have endocrine disruptive properties capable of altering animal and human reproductive function from fetal life to adulthood in both sexes. Medical and public awareness about these health concerns should be increased, particularly among pregnant women.
Collapse
Affiliation(s)
- David M Kristensen
- Genomic and Molecular Biomedicine, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Séverine Mazaud-Guittot
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset-Inserm UMR 1085), 9 Avenue Léon Bernard, F-35042 RENNES, France
| | - Pierre Gaudriault
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset-Inserm UMR 1085), 9 Avenue Léon Bernard, F-35042 RENNES, France
| | - Laurianne Lesné
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset-Inserm UMR 1085), 9 Avenue Léon Bernard, F-35042 RENNES, France
| | - Tania Serrano
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset-Inserm UMR 1085), 9 Avenue Léon Bernard, F-35042 RENNES, France
- Ecole des hautes études en santé publique (EHESP), Avenue Léon Bernard, F-35043 RENNES, France
| | - Katharina M Main
- Department of Growth and Reproduction, University of Copenhagen, Section GR5064, Blegdamsvej 9, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Bernard Jégou
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset-Inserm UMR 1085), 9 Avenue Léon Bernard, F-35042 RENNES, France
- Ecole des hautes études en santé publique (EHESP), Avenue Léon Bernard, F-35043 RENNES, France
| |
Collapse
|
6
|
Hartman TJ, Sisti JS, Hankinson SE, Xu X, Eliassen AH, Ziegler R. Alcohol Consumption and Urinary Estrogens and Estrogen Metabolites in Premenopausal Women. HORMONES & CANCER 2016; 7:65-74. [PMID: 26728472 PMCID: PMC4729640 DOI: 10.1007/s12672-015-0249-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/16/2015] [Indexed: 01/23/2023]
Abstract
In a cross-sectional analysis, we evaluated the associations of usual total alcohol and wine intake with a comprehensive profile of mid-luteal phase urinary estrogens and estrogen metabolites (referred to jointly as EM) in a sample of 603 premenopausal women participating in the Nurses' Health Study II (NHSII). A total of 15 individual EM (pmol/mg creatinine) were measured by a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method with high accuracy and reproducibility. We used linear mixed models to calculate the adjusted geometric means of individual EM, EM grouped by metabolic pathways, and pathway ratios by category of alcohol intake with non-drinkers of alcohol as the referent. Total alcohol intake was not associated with total EM but was positively associated with estradiol (26% higher among women consuming >15 g/day vs. non-drinkers; P trend = 0.03). Wine consumption was positively associated with a number of EM measures including estradiol (22% higher among women consuming ≥ 5 drinks/week vs. non-drinkers, P trend < 0.0001). In conclusion, the total alcohol intake was positively and significantly associated with urinary estradiol levels. Some differences in urinary estrogen metabolites were observed with wine drinking, when compared with non-drinkers. This study strengthens the evidence that alcohol consumption might play a role in breast cancer and other estrogen-related conditions. Additional studies of premenopausal women are needed to further explore the association of alcohol, particularly the specific types of alcohol, on patterns of estrogen metabolism in blood, urine, and tissue.
Collapse
Affiliation(s)
- Terryl J Hartman
- Department of Epidemiology, Rollins School of Public Health & Winship Cancer Institute, Emory University, 1518 Clifton Road NE, CNR #3035, Atlanta, GA, 30322, USA.
| | - Julia S Sisti
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Susan E Hankinson
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Xia Xu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Regina Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
7
|
Oh H, Smith-Warner SA, Tamimi RM, Wang M, Xu X, Hankinson SE, Fuhrman BJ, Ziegler RG, Eliassen AH. Dietary Fat and Fiber Intakes Are Not Associated with Patterns of Urinary Estrogen Metabolites in Premenopausal Women. J Nutr 2015; 145:2109-16. [PMID: 26180245 PMCID: PMC4548163 DOI: 10.3945/jn.115.212779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/02/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Interindividual differences in the bioavailability of potentially carcinogenic estrogen and estrogen metabolites (EMs) may play a role in the risk of breast cancer. OBJECTIVE We examined whether dietary intakes of fiber and fat influence premenopausal EM profiles through effects on estrogen synthesis, metabolism, or excretion. METHODS We conducted a cross-sectional analysis of 598 premenopausal women who participated in a reproducibility study (n = 109) or served as controls in a nested case-control study of breast cancer (n = 489) within the Nurses' Health Study II. Dietary intakes of fiber and fat were assessed via semiquantitative food frequency questionnaires in 1995 and 1999. Midluteal urine samples were collected between 1996 and 1999 and EMs were quantified with the use of HPLC-tandem mass spectrometry. Linear mixed models were used to estimate creatinine-adjusted geometric means for individual EMs and their pathway groups across categories of dietary intake while controlling for total energy intake and potential confounders. RESULTS Higher total dietary fiber intake (>25 g/d vs. ≤15 g/d) was associated with significantly higher concentrations of 4-methoxyestradiol (50% difference, P-difference = 0.01, P-trend = 0.004) and lower concentrations of 17-epiestriol (-27% difference, P-difference = 0.03, P-trend = 0.03), but was not associated with any other EMs. The associations did not vary by fiber intake from different sources. Total fat intake (>35% energy vs. ≤25% energy) was suggestively positively associated with 17-epiestriol (22.6% difference, P-difference = 0.14, P-trend = 0.06); the association was significant for polyunsaturated fatty acid (37% difference, P-difference = 0.01, P-trend = 0.01) and trans fat (36.1% difference, P-difference = 0.01, P-trend = 0.01) intakes. CONCLUSION Fiber and fat intakes were not strongly associated with patterns of estrogen metabolism in premenopausal women. Our data suggest estrogen metabolism is not a major mechanism through which dietary fiber and fat may affect breast or other hormone-related cancer risks.
Collapse
Affiliation(s)
- Hannah Oh
- Department of Epidemiology, Department of Nutrition, and Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA;
| | | | - Rulla M Tamimi
- Department of Epidemiology, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Molin Wang
- Department of Epidemiology, Department of Biostatistics, Harvard School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Xia Xu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Susan E Hankinson
- Department of Epidemiology, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA
| | - Barbara J Fuhrman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD; and Department of Epidemiology, Fay W Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD; and
| | - A Heather Eliassen
- Department of Epidemiology, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|