1
|
Datta S, Rahman MA, Koka S, Boini KM. High Mobility Group Box 1 (HMGB1): Molecular Signaling and Potential Therapeutic Strategies. Cells 2024; 13:1946. [PMID: 39682695 PMCID: PMC11639863 DOI: 10.3390/cells13231946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
High Mobility Group Box 1 (HMGB1) is a highly conserved non-histone chromatin-associated protein across species, primarily recognized for its regulatory impact on vital cellular processes, like autophagy, cell survival, and apoptosis. HMGB1 exhibits dual functionality based on its localization: both as a non-histone protein in the nucleus and as an inducer of inflammatory cytokines upon extracellular release. Pathophysiological insights reveal that HMGB1 plays a significant role in the onset and progression of a vast array of diseases, viz., atherosclerosis, kidney damage, cancer, and neurodegeneration. However, a clear mechanistic understanding of HMGB1 release, translocation, and associated signaling cascades in mediating such physiological dysfunctions remains obscure. This review presents a detailed outline of HMGB1 structure-function relationship and its regulatory role in disease onset and progression from a signaling perspective. This review also presents an insight into the status of HMGB1 druggability, potential limitations in understanding HMGB1 pathophysiology, and future perspective of studies that can be undertaken to address the existing scientific gap. Based on existing paradigm of various studies, HMGB1 is a critical regulator of inflammatory cascades and drives the onset and progression of a broad spectrum of dysfunctions. Studies focusing on HMGB1 druggability have enabled the development of biologics with potential clinical benefits. However, deeper understanding of post-translational modifications, redox states, translocation mechanisms, and mitochondrial interactions can potentially enable the development of better courses of therapy against HMGB1-mediated physiological dysfunctions.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA;
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
2
|
Zglejc-Waszak K, Jozwik M, Thoene M, Wojtkiewicz J. Role of Receptor for Advanced Glycation End-Products in Endometrial Cancer: A Review. Cancers (Basel) 2024; 16:3192. [PMID: 39335163 PMCID: PMC11430655 DOI: 10.3390/cancers16183192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy. EC is associated with metabolic disorders that may promote non-enzymatic glycation and activate the receptor for advanced glycation end-products (RAGE) signaling pathways. Thus, we assumed that RAGE and its ligands may contribute to EC. Of particular interest is the interaction between diaphanous-related formin 1 (Diaph1) and RAGE during the progression of human cancers. Diaph1 is engaged in the proper organization of actin cytoskeletal dynamics, which is crucial in cancer invasion, metastasis, angiogenesis, and axonogenesis. However, the detailed molecular role of RAGE in EC remains uncertain. In this review, we discuss epigenetic factors that may play a key role in the RAGE-dependent endometrial pathology. We propose that DNA methylation may regulate the activity of the RAGE pathway in the uterus. The accumulation of negative external factors, such as hyperglycemia, inflammation, and oxidative stress, may interfere with the DNA methylation process. Therefore, further research should take into account the role of epigenetic mechanisms in EC progression.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Anatomy, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland
| | - Michael Thoene
- Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, Żołnierska 14C Str., 10-561 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
3
|
Idoudi S, Bedhiafi T, Pedersen S, Elahtem M, Alremawi I, Akhtar S, Dermime S, Merhi M, Uddin S. Role of HMGB1 and its associated signaling pathways in human malignancies. Cell Signal 2023; 112:110904. [PMID: 37757902 DOI: 10.1016/j.cellsig.2023.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The High-Mobility Group Box-1 (HMGB1), a non-histone chromatin-associated protein, plays a crucial role in cancer growth and response to therapy as it retains a pivotal role in promoting both cell death and survival. HMGB1 has been reported to regulate several signaling pathways engaged in inflammation, genome stability, immune function, cell proliferation, cell autophagy, metabolism, and apoptosis. However, the association between HMGB1 and cancer is complex and its mechanism in tumorigenesis needs to be further elucidated. This review aims to understand the role of HMGB1 in human malignancies and discuss the signaling pathways linked to this process to provide a comprehensive understanding on the association of HMGB1 with carcinogenesis. Further, we will review the role of HMGB1 as a target/biomarker for cancer therapy, the therapeutic strategies used to target this protein, and its potential role in preventing or treating cancers. In light of the recent growing evidence linking HMGB1 to cancer progression, we think that it may be suggested as a novel and emergent therapeutic target for cancer therapy. Hence, HMGB1 warrants paramount investigation to comprehensively map its role in tumorigenesis.
Collapse
Affiliation(s)
- Sourour Idoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | - Shona Pedersen
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Mohamed Elahtem
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | | | - Sabah Akhtar
- Department of Dermatology and venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Schröder L, Rupp ABA, Gihr KME, Kobilay M, Domroese CM, Mallmann MR, Holdenrieder S. Immunogenic Biomarkers HMGB1 and sRAGE Are Potential Diagnostic Tools for Ovarian Malignancies. Cancers (Basel) 2023; 15:5081. [PMID: 37894448 PMCID: PMC10605106 DOI: 10.3390/cancers15205081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1), soluble receptor of advanced glycation end products (sRAGE) and programmed cell death markers PD-1 and PD-L1 are immunogenic serum biomarkers that may serve as novel diagnostic tools for cancer diagnosis. METHODS We investigated the four markers in sera of 231 women, among them 76 with ovarian cancer, 87 with benign diseases and 68 healthy controls, using enzyme immunoassays. Discrimination between groups was calculated using receiver operating characteristic (ROC) curves and sensitivities at fixed 90% and 95% specificities. RESULTS HMGB1 levels were significantly elevated and sRAGE levels were decreased in cancer patients as compared to benign and healthy controls. In consequence, the ratio of HMGB1 and sRAGE discriminated best between diagnostic groups. The areas under the curve (AUCs) of the ROC curves for differentiation of cancer vs. healthy were 0.77 for HMGB1, 0.65 for sRAGE and 0.78 for the HMGB1/sRAGE ratio, and slightly lower for the differentiation of cancer vs. benigns with 0.72 for HMGB1, 0.61 for sRAGE and 0.74 for the ratio of both. The highest sensitivities for cancer detection at 90% specificity versus benign diseases were achieved using HMGB1 with 41.3% and the HMGB1/sRAGE ratio with 39.2%, followed by sRAGE with 18.9%. PD-1 showed only minor and PD-L1 no power for discrimination between ovarian cancer and benign diseases. CONCLUSION HMGB1 and sRAGE have differential diagnostic potential for ovarian cancer detection and warrant inclusion in further validation studies.
Collapse
Affiliation(s)
- Lars Schröder
- Department of Obstetrics and Gynecology, University Hospital Cologne, 50931 Cologne, Germany
- Department of Obstetrics and Gynecology, Ketteler Hospital, 63071 Offenbach, Germany
| | - Alexander B. A. Rupp
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre, Technical University Munich, 80636 Munich, Germany
| | - Kathrin M. E. Gihr
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Makbule Kobilay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christian M. Domroese
- Department of Obstetrics and Gynecology, University Hospital Cologne, 50931 Cologne, Germany
| | - Michael R. Mallmann
- Department of Obstetrics and Gynecology, University Hospital Cologne, 50931 Cologne, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre, Technical University Munich, 80636 Munich, Germany
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| |
Collapse
|
5
|
Starkova T, Polyanichko A, Tomilin AN, Chikhirzhina E. Structure and Functions of HMGB2 Protein. Int J Mol Sci 2023; 24:ijms24098334. [PMID: 37176041 PMCID: PMC10179549 DOI: 10.3390/ijms24098334] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
High-Mobility Group (HMG) chromosomal proteins are the most numerous nuclear non-histone proteins. HMGB domain proteins are the most abundant and well-studied HMG proteins. They are involved in variety of biological processes. HMGB1 and HMGB2 were the first members of HMGB-family to be discovered and are found in all studied eukaryotes. Despite the high degree of homology, HMGB1 and HMGB2 proteins differ from each other both in structure and functions. In contrast to HMGB2, there is a large pool of works devoted to the HMGB1 protein whose structure-function properties have been described in detail in our previous review in 2020. In this review, we attempted to bring together diverse data about the structure and functions of the HMGB2 protein. The review also describes post-translational modifications of the HMGB2 protein and its role in the development of a number of diseases. Particular attention is paid to its interaction with various targets, including DNA and protein partners. The influence of the level of HMGB2 expression on various processes associated with cell differentiation and aging and its ability to mediate the differentiation of embryonic and adult stem cells are also discussed.
Collapse
Affiliation(s)
- Tatiana Starkova
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexey N Tomilin
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Elena Chikhirzhina
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
6
|
Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41:105. [PMID: 35317831 PMCID: PMC8939209 DOI: 10.1186/s13046-022-02293-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is a leading cause of death worldwide and new estimates revealed prostate cancer as the leading cause of death in men in 2021. Therefore, new strategies are pertinent in the treatment of this malignant disease. Macroautophagy/autophagy is a “self-degradation” mechanism capable of facilitating the turnover of long-lived and toxic macromolecules and organelles. Recently, attention has been drawn towards the role of autophagy in cancer and how its modulation provides effective cancer therapy. In the present review, we provide a mechanistic discussion of autophagy in prostate cancer. Autophagy can promote/inhibit proliferation and survival of prostate cancer cells. Besides, metastasis of prostate cancer cells is affected (via induction and inhibition) by autophagy. Autophagy can affect the response of prostate cancer cells to therapy such as chemotherapy and radiotherapy, given the close association between autophagy and apoptosis. Increasing evidence has demonstrated that upstream mediators such as AMPK, non-coding RNAs, KLF5, MTOR and others regulate autophagy in prostate cancer. Anti-tumor compounds, for instance phytochemicals, dually inhibit or induce autophagy in prostate cancer therapy. For improving prostate cancer therapy, nanotherapeutics such as chitosan nanoparticles have been developed. With respect to the context-dependent role of autophagy in prostate cancer, genetic tools such as siRNA and CRISPR-Cas9 can be utilized for targeting autophagic genes. Finally, these findings can be translated into preclinical and clinical studies to improve survival and prognosis of prostate cancer patients. • Prostate cancer is among the leading causes of death in men where targeting autophagy is of importance in treatment; • Autophagy governs proliferation and metastasis capacity of prostate cancer cells; • Autophagy modulation is of interest in improving the therapeutic response of prostate cancer cells; • Molecular pathways, especially involving non-coding RNAs, regulate autophagy in prostate cancer; • Autophagy possesses both diagnostic and prognostic roles in prostate cancer, with promises for clinical application.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Daniel J Klionsky
- Life Sciences Institute & Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
7
|
PARP1 interacts with HMGB1 and promotes its nuclear export in pathological myocardial hypertrophy. Acta Pharmacol Sin 2019; 40:589-598. [PMID: 30030529 DOI: 10.1038/s41401-018-0044-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/10/2018] [Indexed: 11/09/2022]
Abstract
High-mobility group box 1 (HMGB1) exhibits various functions according to its subcellular location, which is finely conditioned by diverse post-translational modifications, such as acetylation. The nuclear HMGB1 may prevent from cardiac hypertrophy, whereas its exogenous protein is proven to induce hypertrophic response. This present study sought to investigate the regulatory relationships between poly(ADP-ribose) polymerase 1 (PARP1) and HMGB1 in the process of pathological myocardial hypertrophy. Primary-cultured neonatal rat cardiomyocytes (NRCMs) were respectively incubated with three cardiac hypertrophic stimulants, including angiotensin II (Ang II), phenylephrine (PE), and isoproterenol (ISO), and cell surface area and the mRNA expression of hypertrophic biomarkers were measured. the catalytic activity of PARP1 was remarkably enhanced, meanwhile HMGB1 excluded from the nucleus. PARP1 overexpression by infecting with adenovirus PARP1 (Ad-PARP1) promoted the nuclear export of HMGB1, facilitated its secretion outside the cell, aggravated cardiomyocyte hypertrophy, which could be alleviated by HMGB1 overexpression. PE treatment led to the similar results, while that effect was widely depressed by PARP1 silencing or its specific inhibitor AG14361. Moreover, SD rats were intraperitoneally injected with 3-aminobenzamide (3AB, 20 mg/kg every day, a well-established PARP1 inhibitor) 7 days after abdominal aortic constriction (AAC) surgery for 6 weeks, echocardiography and morphometry of the hearts were measured. Pre-treatment of 3AB relieved AAC-caused the translocation of nuclear HMGB1 protein, cardiac hypertrophy, and heart dysfunction. Our research offers a novel evidence that PARP1 combines with HMGB1 and accelerates its translocation from nucleus to cytoplasm, and the course finally causes cardiac hypertrophy.
Collapse
|
8
|
Tumor-derived exosomal HMGB1 promotes esophageal squamous cell carcinoma progression through inducing PD1 + TAM expansion. Oncogenesis 2019; 8:17. [PMID: 30796203 PMCID: PMC6386749 DOI: 10.1038/s41389-019-0126-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Macrophages constitute one of the most common components of immune cells, which penetrate tumors and they have a key role in tumor prognosis. Here, we identified an unrecognized macrophage subpopulation, which favors tumorigenesis. These macrophages express programmed cell death protein 1 (PD1) in a constitutive manner and accumulates in esophageal squamous cell carcinoma (ESCC) in advanced stage of the disease and is negatively associated with the survival of ESCC patients. The PD1+ tumor-associated macrophages (PD1+ TAMs) displayed surface pattern and function akin to M2: a substantial enhancement in CD206 and IL-10 expression; a specific reduction in HLA-DR, CD64, and IL-12 expression; and a significant increase in the ability to inhibit CD8+ T-cell proliferation. Triggering of PD1 signal is effective in increasing PD1+ TAM function. Moreover, exosomal HMGB1 obtained from tumors are efficient in triggering differentiation of monocytes into PD1+ TAMs, which display phenotypic and functional properties of M2. Overall, our work is the first finding to confirm that exosomal HMGB1 obtained from ESCC can successfully trigger clonal expansion of PD1+ TAM. Further, as the macrophages exhibit an M2-like surface profile and function, thereby creating conditions for development of ESCC. Thus, effective methods of treatment include combining immunotherapy with targeting PD1+ TAMs and tumor-derived exosomal HMGB1 to resuscitate immune function in individuals suffering from ESCC.
Collapse
|
9
|
Wu XJ, Chen YY, Gong CC, Pei DS. The role of high-mobility group protein box 1 in lung cancer. J Cell Biochem 2018; 119:6354-6365. [PMID: 29665052 DOI: 10.1002/jcb.26837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
Abstract
High-mobility group protein box 1(HMGB1)is a ubiquitous highly conserved nuclear protein. Acting as a chromatin-binding factor, HMGB1 binds to DNA and plays an important role in stabilizing nucleosome formation, facilitating gene transcription, DNA repairing, inflammation, cell differentiation, and regulating the activity of steroid hormone receptors. Currently, HMGB1 is discovered to be related to development, progression, and targeted therapy of lung cancer, which makes it an attractive biomarker, and therapeutic target. This review aims to encapsulate the relationship between HMGB1 and lung cancer, suggesting that HMGB1 plays a pivotal role in initiation, development, invasion, metastasis, and prognosis of lung cancer.
Collapse
Affiliation(s)
- Xiao-Jin Wu
- Department of Radiation Oncology, The First People's Hospital of Xuzhou, Xuzhou, China.,Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Yuan-Yuan Chen
- Department of Radiation Oncology, The First People's Hospital of Xuzhou, Xuzhou, China
| | - Chan-Chan Gong
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Ananthula S, Sinha A, El Gassim M, Batth S, Marshall GD, Gardner LH, Shimizu Y, ElShamy WM. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers. Oncotarget 2018; 7:20869-89. [PMID: 26989079 PMCID: PMC4991498 DOI: 10.18632/oncotarget.8029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
Resident mesenchymal stem cells (MSCs) promote cancer progression. However, pathways and mechanisms involved in recruiting MSCs into breast tumors remain largely undefined. Here we show that geminin-dependent acetylation releases HMGB1 from the chromatin to the cytoplasm and extracellular space. Extracellular acetylated HMGB1 (Ac-HMGB1) promotes geminin overexpressing (GemOE) cells survival by binding to RAGE and activating NF-κB signaling. Extracellular Ac-HMGB1 also triggers expression and activation of RAGE in the non-expressing MSCs. RAGE activation induces expression of CXCR4 in MSCs and directional migration towards SDF1 (aka CXCL12)-expressing GemOE cells in vitro and in vivo. These effects augmented by the necrotic and hypoxic environment in GemOE tumors, especially within their cores. Reciprocal interactions between newly recruited MSCs and GemOE tumor cells elevate tumor-initiating (TIC), basal and epithelial-to-mesenchymal transition (EMT) traits and enhance aggressiveness in vitro and in vivo in GemOE tumor cells. Indeed, faster, larger and more aggressive tumors develop when GemOE cells are co-injected with MSCs in orthotopic breast tumor model. Concurrently, inhibiting c-Abl (and thus geminin function), RAGE or CXCR4 prevented MSCs recruitment to GemOE cells in vitro and in vivo, and decreased the TIC, basal and EMT phenotypes in these tumor cells. Accordingly, we propose that GemOE tumor cells present within tumor cores represent metastatic precursors, and suppressing the GemOE→HMGB1/RAGE→SDF1/CXCR4 signaling circuit could be a valid target for therapies to inhibit GemOE tumors and their metastases.
Collapse
Affiliation(s)
| | - Abhilasha Sinha
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mohamed El Gassim
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Simran Batth
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gailen D Marshall
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lauren H Gardner
- Institute for Biogenesis Research, Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Yoshiko Shimizu
- Clinical and Translational Research Program, Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Wael M ElShamy
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
11
|
Zhao SQ, Xue ZZ, Wang LZ. HMGB1, TGF-β and NF-κB are associated with chronic allograft nephropathy. Exp Ther Med 2017; 14:6138-6146. [PMID: 29285170 DOI: 10.3892/etm.2017.5319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/03/2017] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate the association between high mobility group protein B1 (HMGB1), transforming growth factor-β1 (TGF-β1), nuclear factor-κB (NF-κB) and chronic allograft nephropathy (CAN) and to identify the clinical significance of HMGB1, TGF-β1, NF-κB on patients with CAN. Between September 2012 and November 2014, 27 patients with CAN diagnosed by biopsy were enrolled in the present study and a further 30 patients that underwent nephrectomy following trauma were selected as the control group. Immunohistochemical staining with HMGB1, TGF-β1 and NF-κB expression in the renal tissues, and western blot analysis were used to measure the relative expression of HMGB1, TGF-β1 and NF-κB. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to estimate the relative expression of HMGB1, TGF-β1 and NF-κB mRNA. Statistical analysis was used to calculate the association between HMGB1, TGF-β1 and NF-κB expression and CAN grade. Immunohistochemical staining demonstrated that HMGB1, TGF-β1 and NF-κB had markedly positive expression rates in renal tubular epithelial cell cytoplasm and membranes in CAN renal tissues, and the positive rates of HMGB1, TGF-β1 and NF-κB increased with the aggravation of CAN pathological grade (I, II and III). The results of western blot analysis indicated that the expression levels of HMGB1, TGF-β1 and NF-κB were significantly higher in the CAN group, compared with the normal group (P<0.05), and the expression levels increased with the progression of CAN grade. A positive association among HMGB1, TGF-β1 and NF-κB expression was identified. RT-qPCR analysis demonstrated that the expression of HMGB1, TGF-β1 and NF-κB mRNA in the CAN group was significantly higher than in the normal group (P<0.05), and the relative expression level of HMGB1, TGF-β1 and NF-κB mRNA not only increased with the aggravation of CAN grade, but was also positively associated with the expression of HMGB1, TGF-β1 and NF-κB, respectively. The abnormal expression of HMGB1, TGF-β1 and NF-κB is therefore, an important manifestation of CAN and the expression of HMGB1, TGF-β1 and NF-κB mRNA in the renal tissues are significantly associated with CAN pathological progression. HMGB1, TGF-β1 and NF-κB may form a signaling pathway that leads to the occurrence of CAN, which induces renal interstitial fibrosis.
Collapse
Affiliation(s)
- Shi-Qi Zhao
- Emergency Intensive Care Unit, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Zhen-Zhen Xue
- Emergency Intensive Care Unit, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Ling-Zhang Wang
- Emergency Intensive Care Unit, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
12
|
Zhang YX, Yuan YQ, Zhang XQ, Huang DL, Wei YY, Yang JG. HMGB1-mediated autophagy confers resistance to gemcitabine in hormone-independent prostate cancer cells. Oncol Lett 2017; 14:6285-6290. [PMID: 29113279 DOI: 10.3892/ol.2017.6965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/14/2017] [Indexed: 12/19/2022] Open
Abstract
As a main treatment of prostate cancer, castration therapy has been widely applied in the clinic. However, the therapeutic strategy for hormone-independent prostate cancer (HIPC) was not satisfied. Gemcitabine is an important chemotherapeutic agent that has been approved for the treatment of numerous human solid tumors, including HIPC, whereas the gemcitabine resistance has become a serious problem in clinical chemotherapy. In the present study, the mechanisms of resistance to gemcitabine were investigated in HIPC cell lines. The results demonstrated that the autophagy markers were induced significantly in HIPC cells subsequent to gemcitabine treatment. Meanwhile, administration of gemcitabine to HIPC cells increased the expression of high mobility group box1 (HMGB1). Furthermore, the gemcitabine-induced autophagy response was attenuated in stable HIPC cells harboring HMGB1 shRNA. Notably, the HIPC cells stably transfected with HMGB1 shRNA or treated with autophagy inhibitors were more sensitive to gemcitabine compared with the control group. These data suggested that inhibition of HMGB1 increased the sensitivity to gemcitabine by decreasing autophagy response in HIPC cells. Overall, the present findings demonstrate a new mechanism for the resistance to gemcitabine in HIPC cell lines.
Collapse
Affiliation(s)
- Yi-Xiang Zhang
- Department of Urology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Ye-Qing Yuan
- Department of Urology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xue-Qi Zhang
- Department of Urology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Dong-Long Huang
- Department of Urology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yu-Ying Wei
- Department of Urology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Jiang-Gen Yang
- Department of Urology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
13
|
Relationships of BRAF mutation and HMGB1 to papillary thyroid carcinoma. Biochem Biophys Res Commun 2017; 486:898-903. [PMID: 28342873 DOI: 10.1016/j.bbrc.2017.03.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 12/25/2022]
Abstract
A poor papillary thyroid cancer (PTC) prognosis is strongly associated with the BRAF V600E mutation. During tumor progression, levels of the high mobility group box 1 (HMGB1) protein are often dysregulated. Results herein demonstrate that HMGB1 protein levels differ between tumor and adjacent non-tumor tissue and that HMGB1 mRNA levels were higher in wild-type BRAF PTC tissues than in BRAF V600E PTC tissues (2-△Ct 0.31 ± 0.25 vs. 0.16 ± 0.12; P < 0.05). HMGB1 protein levels also differed in the same manner (wild-type BRAF PTC tissues 0.11 ± 0.04 vs. BRAF V600E PTC tissues 0.03 ± 0.03; P < 0.001). Although not detected in peripheral blood, low levels of HMGB1 were significantly related to PTC cell lymph node metastasis and extra-glandular infiltration (P = 0.045 and P = 0.002). Experimental results at the cellular level were consistent with tissues and further verified the relationship of BRAF V600E and HMGB1. These findings demonstrate that the BRAF V600E mutation down-regulates levels of HMGB1, likely through activation of the mitogen-activated protein kinase (MAPK) signaling pathways.
Collapse
|
14
|
HMGB1 attenuates TGF-β-induced epithelial-mesenchymal transition of FaDu hypopharyngeal carcinoma cells through regulation of RAGE expression. Mol Cell Biochem 2017; 431:1-10. [PMID: 28285361 DOI: 10.1007/s11010-017-2968-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
Abnormal expression of high-mobility group box-1 (HMGB1) protein occurs in many tumors and is closely associated with tumor invasion and metastasis. However, a role for HMGB1 in epithelial-mesenchymal transition (EMT) in hypopharyngeal carcinoma has not been previously reported. We cultured cells of the hypopharyngeal carcinoma cell line FaDu in vitro and then treated them with 5 ng/ml TGF-β1 for 48 h to induce EMT. Vimentin, Snail, and HMGB1 expression patterns were then detected using immunofluorescence staining; HMGB1 mRNA and protein expression were verified by RT-PCR and western blot analyses. HMGB1 was then silenced in FaDu cells using RNAi, followed by detection of Vimentin, Snail, and HMGB1 expressions by immunofluorescence staining. The mRNA expression levels of Vimentin, Snail, HMGB1, and E-cadherin were verified by RT-PCR, while protein expression of HMGB1 and receptor for advanced glycation end products (RAGE) were detected by western blot analysis. The biological behavior of FaDu cells was observed before and after HMGB1 silencing using wound healing and cell invasion assays. Following culture with 5 ng/ml TGF-β1 for 48 h, the morphology of FaDu cells changed from a regular cobblestone-like appearance into a spindle-like shape. Expression levels of Vimentin, Snail, and HMGB1 were upregulated at both mRNA and protein levels as determined by RT-PCR, immunofluorescence, and western blotting. After HMGB1 silencing, mRNA expression levels of the epithelial cell marker E-cadherin were upregulated. Meanwhile, expression levels of the mesenchymal markers Vimentin and Snail were decreased. Western blotting revealed that HMGB1 and RAGE were downregulated. RNAi-mediated inhibition of HMGB1 expression decreased the capacities of FaDu cells for invasion and metastasis as determined by wound healing and cell invasion assays. HMGB1 is essential for maintaining the interstitial cell phenotype in TGF-β1-induced EMT of FaDu cells, and silencing HMGB1 greatly inhibits the invasive and metastatic ability of these cells.
Collapse
|
15
|
Association of high mobility group BOX-1 and receptor for advanced glycation endproducts with clinicopathological features of haematological malignancies: a systematic review. Contemp Oncol (Pozn) 2017; 20:425-429. [PMID: 28239277 PMCID: PMC5320453 DOI: 10.5114/wo.2016.65600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/01/2016] [Indexed: 01/02/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a versatile protein with nuclear and extracellular functions. In the extracellular milieu, HMGB1 binds to several receptors, notably the receptor for advanced glycation end-products (RAGE). The expressions of HMGB1 and RAGE have been described in a variety of cancers. However, the clinical values of HMGB1 and RAGE in haematological malignancies have yet to be evaluated. A systematic search through PubMed and the Web of Science for articles discussing the role of HMGB1 and RAGE in haematological malignancies produced 15 articles. Overexpression of HMGB1 was reported to be associated with malignancy and, in certain studies, poor prognosis and tumour aggressiveness. Only one included study investigated the clinical value of RAGE, in which no significant difference was found between expression of RAGE in CLL neoplastic cells and nonmalignant controls. The discussed associations of HMGB1 and RAGE with clinicopathological characteristics of patients with haematological malignancies warrants further investigation into the prognostic and diagnostic value of both of these molecules.
Collapse
|
16
|
Nguyen A, Bhavsar S, Riley E, Caponetti G, Agrawal D. Clinical Value of High Mobility Group Box 1 and the Receptor for Advanced Glycation End-products in Head and Neck Cancer: A Systematic Review. Int Arch Otorhinolaryngol 2016; 20:382-389. [PMID: 27746844 PMCID: PMC5063723 DOI: 10.1055/s-0036-1583168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/28/2016] [Indexed: 01/04/2023] Open
Abstract
Introduction High mobility group box 1 is a versatile protein involved in gene transcription, extracellular signaling, and response to inflammation. Extracellularly, high mobility group box 1 binds to several receptors, notably the receptor for advanced glycation end-products. Expression of high mobility group box 1 and the receptor for advanced glycation end-products has been described in many cancers. Objectives To systematically review the available literature using PubMed and Web of Science to evaluate the clinical value of high mobility group box 1 and the receptor for advanced glycation end-products in head and neck squamous cell carcinomas. Data synthesis A total of eleven studies were included in this review. High mobility group box 1 overexpression is associated with poor prognosis and many clinical and pathological characteristics of head and neck squamous cell carcinomas patients. Additionally, the receptor for advanced glycation end-products demonstrates potential value as a clinical indicator of tumor angiogenesis and advanced staging. In diagnosis, high mobility group box 1 demonstrates low sensitivity. Conclusion High mobility group box 1 and the receptor for advanced glycation end-products are associated with clinical and pathological characteristics of head and neck squamous cell carcinomas. Further investigation of the prognostic and diagnostic value of these molecules is warranted.
Collapse
Affiliation(s)
- Austin Nguyen
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, United States
| | - Sheila Bhavsar
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, United States
| | - Erinn Riley
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, United States
| | - Gabriel Caponetti
- Department of Pathology, Creighton University School of Medicine, Omaha, Nebraska, United States
| | - Devendra Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, United States
| |
Collapse
|
17
|
High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5845061. [PMID: 26682011 PMCID: PMC4670870 DOI: 10.1155/2016/5845061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/27/2015] [Indexed: 01/02/2023]
Abstract
Cancer cells try to avoid the overproduction of reactive oxygen species by metabolic rearrangements. These cells also develop specific strategies to increase ROS resistance and to express the enzymatic activities necessary for ROS detoxification. Oxidative stress produces DNA damage and also induces responses, which could help the cell to restore the initial equilibrium. But if this is not possible, oxidative stress finally activates signals that will lead to cell death. High mobility group B (HMGB) proteins have been previously related to the onset and progressions of cancers of different origins. The protein HMGB1 behaves as a redox sensor and its structural changes, which are conditioned by the oxidative environment, are associated with different functions of the protein. This review describes recent advances in the role of human HMGB proteins and other proteins interacting with them, in cancerous processes related to oxidative stress, with special reference to ovarian and prostate cancer. Their participation in the molecular mechanisms of resistance to cisplatin, a drug commonly used in chemotherapy, is also revised.
Collapse
|
18
|
Clinical impact of high mobility group box 1 protein in epithelial ovarian cancer. Arch Gynecol Obstet 2015; 293:645-50. [PMID: 26305032 DOI: 10.1007/s00404-015-3864-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of this study was to confirm the expression of high mobility group box 1 (HMGB1) in patients with epithelial ovarian cancer (EOC) and to evaluate the prognostic significance of HMGB1. METHODS A total of 74 patients with EOC comprised our cohort. Retrospectively collected tissue microarray from EOC patients treated with debulking surgery followed by taxane and platinum chemotherapy were analyzed for evaluation of the prognostic significance of HMGB1. Expression of HMGB1 was assessed by immunohistochemistry. RESULTS The positive staining was detected in 80% of EOC patients and the rate of high HMGB1 expression was 42%. In advanced stage, patients with high HMGB1 expression showed a poorer prognosis than low HMGB1 expression group [median progression-free survival (PFS), 10.8 vs. 21.7 months, P = 0.005]. High HMGB1 expression was an independent predictor for PFS (P = 0.024). CONCLUSIONS HMGB1 expression is expected as a promising biomarker for EOC and further studies are needed to assess potential roles in EOC.
Collapse
|
19
|
Liu Z, Du R, Long J, Guo K, Ge C, Bi S, Xu Y. microRNA-218 promotes gemcitabine sensitivity in human pancreatic cancer cells by regulating HMGB1 expression. Chin J Cancer Res 2015; 27:267-78. [PMID: 26157323 DOI: 10.3978/j.issn.1000-9604.2015.04.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The purpose of this study was to examine the effect of gemcitabine (GEM) on microRNA-218 (miR-218) expression in human pancreatic cancer cells. METHODS Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to examine the differences in miR-218 expression between the GEM-sensitive BxPC-3 pancreatic cancer cells and GEM-resistant PANC-1 cells. The effect of GEM on the expression of miR-218 in PANC-1 cells was also investigated. PANC-1 cells were transfected either with HMGB1 siRNA to knock down the expression of HMGB1 or with the recombinant HMGB1 expression vector (pcDNA3.1-HMGB1) to overexpress HMGB1. The effect of ectopic expression of HMGB1 on the apoptosis of miR-218-transfected and GEM-treated PANC-1 cells was examined by flow cytometric analysis. RESULTS The miR-218 expression level was lower in GEM-resistant PANC-1 cells compared to GEM-sensitive BxPC-3 cells (P<0.05). The percentage of apoptotic PANC-1 cells was significantly increased in the miR-218 mimic + GEM group compared to the mimic ctrl + GEM group and the normal control group (P<0.01). The HMGB1 expression level was markedly decreased in PANC-1 cells transfected with HMGB1 siRNA but was significantly increased in PANC-1 cells transfected with the recombinant HMGB1 expression vector, pcDNA3.1-HMGB1 (P<0.01). The proportion of apoptotic PANC-1 cells was significantly lower in the miR-218 mimic + GEM + pcDNA3.1-HMGB1 group compared to the miR-218 mimic + GEM + HMGB1 siRNA group (P<0.01). CONCLUSIONS The expression level of miR-218 was downregulated in the GEM-resistant cell line. miR-218 promoted the sensitivity of PANC-1 cells to GEM, which was achieved mainly through regulating the expression of HMGB1 in PANC-1 cells.
Collapse
Affiliation(s)
- Zhe Liu
- 1 Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang 110001, China ; 2 Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang 110024, China
| | - Ruixia Du
- 1 Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang 110001, China ; 2 Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang 110024, China
| | - Jin Long
- 1 Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang 110001, China ; 2 Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang 110024, China
| | - Kejian Guo
- 1 Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang 110001, China ; 2 Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang 110024, China
| | - Chunlin Ge
- 1 Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang 110001, China ; 2 Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang 110024, China
| | - Shulong Bi
- 1 Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang 110001, China ; 2 Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang 110024, China
| | - Yuanhong Xu
- 1 Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang 110001, China ; 2 Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang 110024, China
| |
Collapse
|
20
|
Liu Z, Xu Y, Long J, Guo K, Ge C, Du R. microRNA-218 suppresses the proliferation, invasion and promotes apoptosis of pancreatic cancer cells by targeting HMGB1. Chin J Cancer Res 2015; 27:247-57. [PMID: 26157321 DOI: 10.3978/j.issn.1000-9604.2015.04.07] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To detect the expression profiles of microRNA-218 (miR-218) in human pancreatic cancer tissue (PCT) and cells and their effects on the biological features of human pancreatic cancer cell line PANC-1 and observe the effect of miR-218 on the expression of the target gene high mobility group box 1 (HMGB1), with an attempt to provide new treatment methods and strategies for pancreatic cancer. METHODS The expressions of miR-218 in PCT and normal pancreas tissue as well as in various pancreatic cancer cell lines including AsPC-1, BxPC-3, and PANC-1 were determined with quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The change of miR-218 expression in PANC-1 cells was detected using qRT-PCT after the transfection of miR-218 mimic for 48 h. Cell Counting Kit-8 (CCK-8) was applied for detecting the effect of miR-218 on the activity of PANC-1 cells. The effects of miR-218 on the proliferation and apoptosis of PANC-1 cells were analyzed using the flow cytometry. The effect of miR-218 on the migration of PANC-1 cells was detected using the Trans-well migration assay. The HMGB1 was found to be a target gene of miR-218 by luciferase reporter assay, and the effect of miR-218 on the expression of HMGB1 protein in cells were determined using Western blotting. RESULTS As shown by qRT-PCR, the expressions of miR-218 in PCT and in pancreatic cancer cell line significantly decreased when compared with the normal pancreatic tissue (NPT) (P<0.01). Compared with the control group, the miR-218 expression significantly increased in the PANC-1 group after the transfection of miR-218 mimic for 48 h (P<0.01). Growth curve showed that the cell viability significantly dropped after the overexpression of miR-218 in the PANC-1 cells for two days (P<0.05). Flow cytometry showed that the S-phase fraction significantly dropped after the overexpression of miR-218 (P<0.01) and the percentage of apoptotic cells significantly increased (P<0.01). As shown by the Trans-well migration assay, the enhanced miR-218 expression was associated with a significantly lower number of cells that passed through a Transwell chamber (P<0.01). Luciferase reporter assay showed that, compared with the control group, the relative luciferase activity significantly decreased in the miR-218 mimic group (P<0.01). As shown by the Western blotting, compared with the control group, the HMGB1 protein expression significantly decreased in the PANC-1 group after the transfection of miR-218 mimic for 48 h (P<0.01). CONCLUSIONS The miR-218 expression decreases in human PCT and cell lines. miR-218 can negatively regulate the HMGB1 protein expression and inhibit the proliferation and invasion of pancreatic cancer cells. A treatment strategy by enhancing the miR-218 expression may benefit the patients with pancreatic cancer.
Collapse
Affiliation(s)
- Zhe Liu
- 1 Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang 110000, China ; 2 Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang 110024, China
| | - Yuanhong Xu
- 1 Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang 110000, China ; 2 Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang 110024, China
| | - Jin Long
- 1 Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang 110000, China ; 2 Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang 110024, China
| | - Kejian Guo
- 1 Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang 110000, China ; 2 Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang 110024, China
| | - Chunlin Ge
- 1 Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang 110000, China ; 2 Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang 110024, China
| | - Ruixia Du
- 1 Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang 110000, China ; 2 Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang 110024, China
| |
Collapse
|
21
|
HMGB1 promotes cellular proliferation and invasion, suppresses cellular apoptosis in osteosarcoma. Tumour Biol 2014; 35:12265-74. [PMID: 25168370 DOI: 10.1007/s13277-014-2535-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/20/2014] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Unfortunately, treatment failures are common due to the metastasis and chemoresistance, but the underlying molecular mechanism remains unclear. Accumulating evidence indicated that the deregulation of DNA-binding protein high-mobility group box 1 (HMGB1) was associated with the development of cancer. This study aimed to explore the expression of HMGB1 in osteosarcoma tissues and its correlation to the clinical pathology of osteosarcoma and to discuss the role of HMGB1 in the development of osteosarcoma. The results from RT-PCR and Western blot showed that the expression rate of HMGB1 messenger RNA (mRNA) and the expression of HMGB1 in the osteosarcoma tissues were significantly higher than those in normal bone tissue (p < 0.05), the expression rate of HMGB1 mRNA and the expression of HMGB1 in the carcinoma tissues with positive lung metastasis were significantly higher than those without lung metastasis (p < 0.05), and with increasing Enneking stage, the expression rate of HMGB1 mRNA and the expression of HMGB1 also increased (p < 0.05). In order to explore the role of HMGB1 in osteosarcoma, the expression of HMGB1 in the human osteosarcoma MG-63 cell line was downregulated by the technique of RNA interference. Western blot results showed that the protein expression of HMGB1 was significantly decreased in the MG-63 cells from HMGB1-siRNA transfection group (p < 0.05), which suggested that HMGB1 was successfully downregulated in the MG-63 cells. Then the changes in proliferation, apoptosis, and invasion of MG-63 cells were examined by MTT test, PI staining, annexin V staining, and transwell chamber assay. Results showed that the abilities of proliferation and invasion were suppressed in HMGB1 knockdown MG-63 cells, and the abilities of apoptosis were enhanced in HMGB1 knockdown MG-63 cells. The expression of cyclin D1, MMP-9 was downregulated in HMGB1 knockdown MG-63 cells, and the expression of caspase-3 was upregulated in HMGB1 knockdown MG-63 cells. Taken together, the overexpression of HMGB1 in osteosarcoma might be related to the tumorigenesis, invasion, and metastasis of osteosarcoma, which might be a potential target for the treatment of osteosarcoma.
Collapse
|