1
|
Xiong Y, Wang T, Wang W, Zhang Y, Zhang F, Yuan J, Qin F, Wang X. Plasma proteome analysis implicates novel proteins as potential therapeutic targets for chronic kidney disease: A proteome-wide association study. Heliyon 2024; 10:e31704. [PMID: 38828357 PMCID: PMC11140797 DOI: 10.1016/j.heliyon.2024.e31704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Chronic kidney disease (CKD) is prevalent globally with limited therapeutic drugs available. To systemically identify novel proteins involved in the pathogenesis of CKD and possible therapeutic targets, we integrated human plasma proteomes with the genome-wide association studies (GWASs) of CKD, estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN) to perform proteome-wide association study (PWAS), Mendelian Randomization and Bayesian colocalization analyses. The single-cell RNA sequencing data of healthy human and mouse kidneys were analyzed to explore the cell-type specificity of identified genes. Functional enrichment analysis was conducted to investigate the involved signaling pathways. The PWAS identified 22 plasma proteins significantly associated with CKD. Of them, the significant associations of three proteins (INHBC, LMAN2, and SNUPN) were replicated in the GWASs of eGFR, and BUN. Mendelian Randomization analyses showed that INHBC and SNUPN were causally associated with CKD, eGFR, and BUN. The Bayesian colocalization analysis identified shared causal variants for INHBC in CKD, eGFR, and BUN (all PP4 > 0.75). The single-cell RNA sequencing revealed that the INHBC gene was sparsely scattered within the kidney cells. This proteomic study revealed that INHBC, LMAN2, and SNUPN may be involved in the pathogenesis of CKD, which represent novel therapeutic targets and warrant further exploration in future research.
Collapse
Affiliation(s)
- Yang Xiong
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Tianhong Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Wei Wang
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Yangchang Zhang
- Department of Public Health, Capital Medical University, Beijing, 100000, China
| | - Fuxun Zhang
- Department of Urology, Tangdu Hospital, The Air Force Medical University, Xi'an, Shaanxi, 710000, China
| | - Jiuhong Yuan
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Feng Qin
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Xianding Wang
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Sichuan, 610041, China
- Kidney Transplant Center, Transplant Center, West China Hospital, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
2
|
Stinchfield MJ, Weasner BP, Weasner BM, Zhitomersky D, Kumar JP, O’Connor MB, Newfeld SJ. Fourth Chromosome Resource Project: a comprehensive resource for genetic analysis in Drosophila that includes humanized stocks. Genetics 2024; 226:iyad201. [PMID: 37981656 PMCID: PMC10847715 DOI: 10.1093/genetics/iyad201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
The fourth chromosome is the final frontier for genetic analysis in Drosophila. Small, heterochromatic, and devoid of recombination the fourth has long been ignored. Nevertheless, its long arm contains 79 protein-coding genes. The Fourth Chromosome Resource Project (FCRP) has a goal of facilitating the investigation of genes on this neglected chromosome. The project has 446 stocks publicly available at the Bloomington and Kyoto stock centers with phenotypic data curated by the FlyBase and FlyPush resources. Four of the five stock sets are nearly complete: (1) UAS.fly cDNAs, (2) UAS.human homolog cDNAs, (3) gene trap mutants and protein traps, and (4) stocks promoting meiotic and mitotic recombination on the fourth. Ongoing is mutagenesis of each fourth gene on a new FRT-bearing chromosome for marked single-cell clones. Beyond flies, FCRP facilitates the creation and analysis of humanized fly stocks. These provide opportunities to apply Drosophila genetics to the analysis of human gene interaction and function. In addition, the FCRP provides investigators with confidence through stock validation and an incentive via phenotyping to tackle genes on the fourth that have never been studied. Taken together, FCRP stocks will facilitate all manner of genetic and molecular studies. The resource is readily available to researchers to enhance our understanding of metazoan biology, including conserved molecular mechanisms underlying health and disease.
Collapse
Affiliation(s)
| | | | - Bonnie M Weasner
- Department Biology, Indiana University, Bloomington, IN 47405, USA
| | - David Zhitomersky
- Department Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin P Kumar
- Department Biology, Indiana University, Bloomington, IN 47405, USA
| | - Michael B O’Connor
- Department Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stuart J Newfeld
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
3
|
Activin B and Activin C Have Opposing Effects on Prostate Cancer Progression and Cell Growth. Cancers (Basel) 2022; 15:cancers15010147. [PMID: 36612143 PMCID: PMC9817897 DOI: 10.3390/cancers15010147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Current prognostic and diagnostic tests for prostate cancer are not able to accurately distinguish between aggressive and latent cancer. Members of the transforming growth factor-β (TGFB) family are known to be important in regulating prostate cell growth and some have been shown to be dysregulated in prostate cancer. Therefore, the aims of this study were to examine expression of TGFB family members in primary prostate tumour tissue and the phenotypic effect of activins on prostate cell growth. Tissue cores of prostate adenocarcinoma and normal prostate were immuno-stained and protein expression was compared between samples with different Gleason grades. The effect of exogenous treatment with, or overexpression of, activins on prostate cell line growth and migration was examined. Activin B expression was increased in cores containing higher Gleason patterns and overexpression of activin B inhibited growth of PNT1A cells but increased growth and migration of the metastatic PC3 cells compared to empty vector controls. In contrast, activin C expression decreased in higher Gleason grades and overexpression increased growth of PNT1A cells and decreased growth of PC3 cells. In conclusion, increased activin B and decreased activin C expression is associated with increasing prostate tumor grade and therefore have potential as prognostic markers of aggressive prostate cancer.
Collapse
|