1
|
Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R, Marcucci F. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024; 58:101076. [PMID: 39476482 PMCID: PMC11555605 DOI: 10.1016/j.neo.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/11/2024]
Abstract
Glycolytic metabolism generates energy and intermediates for biomass production. Tumor-associated glycolysis is upregulated compared to normal tissues in response to tumor cell-autonomous or non-autonomous stimuli. The consequences of this upregulation are twofold. First, the metabolic effects of glycolysis become predominant over those mediated by oxidative metabolism. Second, overexpressed components of the glycolytic pathway (i.e. enzymes or metabolites) acquire new functions unrelated to their metabolic effects and which are referred to as "moonlighting" functions. These functions include induction of mutations and other tumor-initiating events, effects on cancer stem cells, induction of increased expression and/or activity of oncoproteins, epigenetic and transcriptional modifications, bypassing of senescence and induction of proliferation, promotion of DNA damage repair and prevention of DNA damage, antiapoptotic effects, inhibition of drug influx or increase of drug efflux. Upregulated metabolic functions and acquisition of new, non-metabolic functions lead to biological effects that support tumorigenesis: promotion of tumor initiation, stimulation of tumor cell proliferation and primary tumor growth, induction of epithelial-mesenchymal transition, autophagy and metastasis, immunosuppressive effects, induction of drug resistance and effects on tumor accessory cells. These effects have negative consequences on the prognosis of tumor patients. On these grounds, it does not come to surprise that tumor-associated glycolysis has become a target of interest in antitumor drug discovery. So far, however, clinical results with glycolysis inhibitors have fallen short of expectations. In this review we propose approaches that may allow to bypass some of the difficulties that have been encountered so far with the therapeutic use of glycolysis inhibitors.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy.
| |
Collapse
|
2
|
Midorikawa S, Mizukami H, Kudoh K, Takeuchi Y, Sasaki T, Kushibiki H, Wang Z, Itakura Y, Murakami K, Kudo N, Nagaki T, Wakasa T, Nakamura Y, Matsubara A. Diabetes can increase the prevalence of EBV infection and worsen the prognosis of nasopharyngeal carcinoma. Pathology 2024; 56:65-74. [PMID: 38071160 DOI: 10.1016/j.pathol.2023.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 01/24/2024]
Abstract
Epstein‒Barr virus (EBV) infection is a primary oncogenic factor of nasopharyngeal carcinoma (NPC) that elicits epithelial-mesenchymal transition (EMT). Although diabetic patients are more susceptible to various infectious diseases, the pathological association with virus-related NPC has not yet been clarified. Herein, we evaluated the influence of diabetes on the clinicopathological changes of 70 patients with NPC. Disease-specific survival (DSS) modified by viral infection was also analysed. The proportion of NPC patients with diabetes was 32.9% (23/70 cases), and 91.3% (21/23 cases) were infected with EBV detected by EBER-I in situ hybridisation. NPC with diabetes showed an effect on EMT evaluated by immunostaining for E-cadherin and vimentin, which was correlated with HbA1c levels. Receiver operating characteristic (ROC) curve analysis determined a HbA1c level of 6.5% as the cut-off value for primary disease death at 2 years [area under the curve (AUC) 0.76; sensitivity 0.64; and specificity 0.81]. High HbA1c levels (≥6.5%) significantly increased the number of lymph node metastases in NPC compared to low HbA1c levels (<6.5%, p<0.01). Diabetic NPC patients had a significantly poorer prognosis than all non-diabetic patients (DSS, 72 months vs not reached, p<0.05). Diabetic EBV-positive NPC patients had a significantly poorer prognosis than non-diabetic EBV-positive patients (DSS, 35 months vs not reached, p<0.01). Multivariate analysis using the Cox proportional hazards model also suggested that HbA1c ≥6.5% was a significant factor in poor prognosis, with a hazard ratio of 6.84 (p<0.05). Collectively, our results revealed for the first time a high prevalence of EBV infection, poor prognosis and the importance of proper glycaemic control in diabetic NPC patients.
Collapse
Affiliation(s)
- Shin Midorikawa
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Otolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yuki Takeuchi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hanae Kushibiki
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Zhenchao Wang
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yuko Itakura
- Department of Pathology, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, Miyagi, Japan
| | - Kotaro Murakami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Naomi Kudo
- Department of Otolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takahiko Nagaki
- Department of Otolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tomoko Wakasa
- Department of Diagnostic Pathology, Kindai University Nara Hospital, Nara, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Atsushi Matsubara
- Department of Otolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
3
|
Panigrahi G, Candia J, Dorsey TH, Tang W, Ohara Y, Byun JS, Minas TZ, Zhang A, Ajao A, Cellini A, Yfantis HG, Flis AL, Mann D, Ioffe O, Wang XW, Liu H, Loffredo CA, Napoles AM, Ambs S. Diabetes-associated breast cancer is molecularly distinct and shows a DNA damage repair deficiency. JCI Insight 2023; 8:e170105. [PMID: 37906280 PMCID: PMC10795835 DOI: 10.1172/jci.insight.170105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Diabetes commonly affects patients with cancer. We investigated the influence of diabetes on breast cancer biology using a 3-pronged approach that included analysis of orthotopic human tumor xenografts, patient tumors, and breast cancer cells exposed to diabetes/hyperglycemia-like conditions. We aimed to identify shared phenotypes and molecular signatures by investigating the metabolome, transcriptome, and tumor mutational burden. Diabetes and hyperglycemia did not enhance cell proliferation but induced mesenchymal and stem cell-like phenotypes linked to increased mobility and odds of metastasis. They also promoted oxyradical formation and both a transcriptome and mutational signatures of DNA repair deficiency. Moreover, food- and microbiome-derived metabolites tended to accumulate in breast tumors in the presence of diabetes, potentially affecting tumor biology. Breast cancer cells cultured under hyperglycemia-like conditions acquired increased DNA damage and sensitivity to DNA repair inhibitors. Based on these observations, we conclude that diabetes-associated breast tumors may show an increased drug response to DNA damage repair inhibitors.
Collapse
Affiliation(s)
- Gatikrushna Panigrahi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Tiffany H. Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Data Science & Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Yuuki Ohara
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jung S. Byun
- Division of Intramural Research, National Institute of Minority Health and Health Disparities, NIH, Bethesda, Maryland, USA
| | - Tsion Zewdu Minas
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Amy Zhang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Anuoluwapo Ajao
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Ashley Cellini
- Department of Pathology, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Harris G. Yfantis
- Department of Pathology, University of Maryland Medical Center and Veterans Affairs Maryland Care System, Baltimore, Maryland, USA
| | - Amy L. Flis
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Dean Mann
- Department of Pathology, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Olga Ioffe
- Department of Pathology, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Xin W. Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Christopher A. Loffredo
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Anna Maria Napoles
- Division of Intramural Research, National Institute of Minority Health and Health Disparities, NIH, Bethesda, Maryland, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Sankofi BM, Valencia-Rincón E, Sekhri M, Ponton-Almodovar AL, Bernard JJ, Wellberg EA. The impact of poor metabolic health on aggressive breast cancer: adipose tissue and tumor metabolism. Front Endocrinol (Lausanne) 2023; 14:1217875. [PMID: 37800138 PMCID: PMC10548218 DOI: 10.3389/fendo.2023.1217875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Obesity and type 2 diabetes are chronic metabolic diseases that impact tens to hundreds of millions of adults, especially in developed countries. Each condition is associated with an elevated risk of breast cancer and with a poor prognosis after treatment. The mechanisms connecting poor metabolic health to breast cancer are numerous and include hyperinsulinemia, inflammation, excess nutrient availability, and adipose tissue dysfunction. Here, we focus on adipose tissue, highlighting important roles for both adipocytes and fibroblasts in breast cancer progression. One potentially important mediator of adipose tissue effects on breast cancer is the fibroblast growth factor receptor (FGFR) signaling network. Among the many roles of FGFR signaling, we postulate that key mechanisms driving aggressive breast cancer include epithelial-to-mesenchymal transition and cellular metabolic reprogramming. We also pose existing questions that may help better understand breast cancer biology in people with obesity, type 2 diabetes, and poor metabolic health.
Collapse
Affiliation(s)
- Barbara Mensah Sankofi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Estefania Valencia-Rincón
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Malika Sekhri
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Adriana L. Ponton-Almodovar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Elizabeth A. Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
5
|
Marcucci F, Rumio C. On the Role of Glycolysis in Early Tumorigenesis-Permissive and Executioner Effects. Cells 2023; 12:cells12081124. [PMID: 37190033 DOI: 10.3390/cells12081124] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Reprogramming energy production from mitochondrial respiration to glycolysis is now considered a hallmark of cancer. When tumors grow beyond a certain size they give rise to changes in their microenvironment (e.g., hypoxia, mechanical stress) that are conducive to the upregulation of glycolysis. Over the years, however, it has become clear that glycolysis can also associate with the earliest steps of tumorigenesis. Thus, many of the oncoproteins most commonly involved in tumor initiation and progression upregulate glycolysis. Moreover, in recent years, considerable evidence has been reported suggesting that upregulated glycolysis itself, through its enzymes and/or metabolites, may play a causative role in tumorigenesis, either by acting itself as an oncogenic stimulus or by facilitating the appearance of oncogenic mutations. In fact, several changes induced by upregulated glycolysis have been shown to be involved in tumor initiation and early tumorigenesis: glycolysis-induced chromatin remodeling, inhibition of premature senescence and induction of proliferation, effects on DNA repair, O-linked N-acetylglucosamine modification of target proteins, antiapoptotic effects, induction of epithelial-mesenchymal transition or autophagy, and induction of angiogenesis. In this article we summarize the evidence that upregulated glycolysis is involved in tumor initiation and, in the following, we propose a mechanistic model aimed at explaining how upregulated glycolysis may play such a role.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
6
|
Rai V, Moellmer R, Agrawal DK. Role of fibroblast plasticity and heterogeneity in modulating angiogenesis and healing in the diabetic foot ulcer. Mol Biol Rep 2023; 50:1913-1929. [PMID: 36528662 DOI: 10.1007/s11033-022-08107-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022]
Abstract
Chronic diabetic foot ulcers (DFUs) are an important clinical issue faced by clinicians despite the advanced treatment strategies consisting of wound debridement, off-loading, medication, wound dressings, and keeping the ulcer clean. Non-healing DFUs are associated with the risk of amputation, increased morbidity and mortality, and economic stress. Neo-angiogenesis and granulation tissue formation are necessary for physiological DFU healing and acute inflammation play a key role in healing. However, chronic inflammation in association with diabetic complications holds the ulcer in the inflammatory phase without progressing to the resolution phase contributing to non-healing. Fibroblasts acquiring myofibroblasts phenotype contribute to granulation tissue formation and angiogenesis. However, recent studies suggest the presence of five subtypes of fibroblast population and of changing density in non-healing DFUs. Further, the association of fibroblast plasticity and heterogeneity with wound healing suggests that the switch in fibroblast phenotype may affect wound healing. The fibroblast phenotype shift and altered function may be due to the presence of chronic inflammation or a diabetic wound microenvironment. This review focuses on the role of fibroblast plasticity and heterogeneity, the effect of hyperglycemia and inflammatory cytokines on fibroblasts, and the interaction of fibroblasts with other cells in diabetic wound microenvironment in the perspective of DFU healing. Next, we summarize secretory, angiogenic, and angiostatic phenotypes of fibroblast which have been discussed in other organ systems but not in relation to DFUs followed by the perspective on the role of their phenotypes in promoting angiogenesis in DFUs.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 91766, Pomona, CA, USA.
| | - Rebecca Moellmer
- College of Podiatric Medicine, Western University of Health Sciences, 91766, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 91766, Pomona, CA, USA
| |
Collapse
|
7
|
Hong X, Hu Y, Yuan Z, Fang Z, Zhang X, Yuan Y, Guo C. Oxidatively Damaged Nucleic Acid: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1153-1167. [PMID: 35946074 DOI: 10.1089/ars.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Our current knowledge of the mechanism between diabetes and cancer is limited. Oxidatively damaged nucleic acid is considered a critical factor to explore the connections between these two diseases. Recent Advances: The link between diabetes mellitus and cancer has attracted increasing attention in recent years. Emerging evidence supports that oxidatively damaged nucleic acid caused by an imbalance between reactive oxygen species generation and elimination is a bridge connecting diabetes and cancer. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine assume important roles as biomarkers in assessing the relationship between oxidatively damaged nucleic acid and cancer. Critical Issues: The consequences of diabetes are extensive and may lead to the occurrence of cancer by influencing a combination of factors. At present, there is no direct evidence that diabetes causes cancer by affecting a single factor. Furthermore, the difficulty in controlling variables and differences in detection methods lead to poor reliability and repeatability of results, and there are no clear cutoff values for biomarkers to indicate cancer risk. Future Directions: A better understanding of connections as well as mechanisms between diabetes and cancer is still needed. Both diabetes and cancer are currently intractable diseases. Further exploration of the specific mechanism of oxidatively damaged nucleic acid in the connection between diabetes and cancer is urgently needed. In the future, it is necessary to further take oxidatively damaged nucleic acid as an entry point to provide new ideas for the diagnosis and treatment of diabetes and cancer. Experimental drugs targeting the repair process of oxidatively generated damage require an extensive preclinical evaluation and could ultimately provide new treatment strategies for these diseases. Antioxid. Redox Signal. 37, 1153-1167.
Collapse
Affiliation(s)
- Xiujuan Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihao Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Agostini M, Mancini M, Candi E. Long non-coding RNAs affecting cell metabolism in cancer. Biol Direct 2022; 17:26. [PMID: 36182907 PMCID: PMC9526990 DOI: 10.1186/s13062-022-00341-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/27/2021] [Indexed: 11/10/2022] Open
Abstract
Metabolic reprogramming is commonly recognized as one important hallmark of cancers. Cancer cells present significant alteration of glucose metabolism, oxidative phosphorylation, and lipid metabolism. Recent findings demonstrated that long non-coding RNAs control cancer development and progression by modulating cell metabolism. Here, we give an overview of breast cancer metabolic reprogramming and the role of long non-coding RNAs in driving cancer-specific metabolic alteration.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Department Experimental Medicine, University of Rome "Tor Vergata", TOR, Via Montpellier,1, 00133, Rome, Italy
| | - Mara Mancini
- IDI-IRCCS, Via Monti di Creta 104, 00166, Rome, Italy
| | - Eleonora Candi
- Department Experimental Medicine, University of Rome "Tor Vergata", TOR, Via Montpellier,1, 00133, Rome, Italy. .,IDI-IRCCS, Via Monti di Creta 104, 00166, Rome, Italy.
| |
Collapse
|
9
|
YY1 affects the levels and function of fibulin‑5 in ox‑LDL‑treated vascular smooth muscle cells. Exp Ther Med 2022; 23:407. [PMID: 35619637 PMCID: PMC9115630 DOI: 10.3892/etm.2022.11334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022] Open
Abstract
Fibulin-5 is reportedly involved in the pathological process of atherosclerosis (AS) where low expression has been frequently observed in ruptured atherosclerotic plaques. The aim of the present study was to determine the effects of fibulin-5 on the responses of vascular smooth muscle cells (VSMC) to oxidized low-density lipoprotein (ox-LDL). The expression of fibulin-5 was studied in human aortic-VSMCs (HA-VSMCs) treated with ox-LDL. Fibulin-5 was first overexpressed by the transfection of Ov-Fibulin-5 plasmids in HA-VSMCs challenged with ox-LDL to investigate its influence on cell proliferation, migration and invasion using Cell Counting Kit-8, wound healing and Transwell assays. Yin Yang-1 (YY1) was bioinformatically predicted to bind to the promoter sites of fibulin-5, which was subsequently confirmed by dual-luciferase reporter gene assay. Fibulin-5 overexpression was able to suppress cell proliferation, invasion and migration, which was effectively reversed by YY1 silencing by the transfection of siRNA-Fibulin-5 plasmids which could induced fibulin-5 silencing. YY1 binding sites in the promoter region of fibulin-5 were identified and confirmed in vitro by chromatin immunoprecipitation assay and dual-luciferase reporter gene assay. The present results suggested that as a modulator of fibulin-5, YY1 alleviated ox-LDL-induced proliferation, invasion, migration and phenotypic transition from differentiated contractile phenotype to dedifferentiated phenotype in VSMCs. However, the mechanism underlying the YY1-mediated regulation of fibulin-5 expression needs to be confirmed further in vivo. Nevertheless, targeting fibulin-5 and YY1 could be further developed for AS therapy.
Collapse
|
10
|
Benbrook DM, Hocker JRS, Moxley KM, Hanas JS. Sera Protein Signatures of Endometrial Cancer Lymph Node Metastases. Int J Mol Sci 2022; 23:3277. [PMID: 35328698 PMCID: PMC8954239 DOI: 10.3390/ijms23063277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
The presence of lymph node metastases in endometrial cancer patients is a critical factor guiding treatment decisions; however, surgical and imaging methods for their detection are limited by morbidity and inaccuracy. To determine if sera can predict the presence of positive lymph nodes, sera collected from endometrial cancer patients with or without lymph node metastases, and benign gynecology surgical patients (N = 20 per group) were subjected to electron spray ionization mass spectrometry (ES-MS). Peaks that were significantly different among the groups were evaluated by leave one out cross validation (LOOCV) for their ability to differentiation between the groups. Proteins in the peaks were identified by MS/MS of five specimens in each group. Ingenuity Pathway Analysis was used to predict pathways regulated by the protein profiles. LOOCV of sera protein discriminated between each of the group comparisons and predicted positive lymph nodes. Pathways implicated in metastases included loss of PTEN activation and PI3K, AKT and PKA activation, leading to calcium signaling, oxidative phosphorylation and estrogen receptor-induced transcription, leading to platelet activation, epithelial-to-mesenchymal transition and senescence. Upstream activators implicated in these events included neurostimulation and inflammation, activation of G-Protein-Coupled Receptor Gβγ, loss of HER-2 activation and upregulation of the insulin receptor.
Collapse
Affiliation(s)
- Doris Mangiaracina Benbrook
- Gynecologic Oncology Section, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - James Randolph Sanders Hocker
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Katherine Marie Moxley
- Department of Obstetrics and Gynecology, Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA;
| | - Jay S. Hanas
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
11
|
Tumor Cell Glycolysis—At the Crossroad of Epithelial–Mesenchymal Transition and Autophagy. Cells 2022; 11:cells11061041. [PMID: 35326492 PMCID: PMC8947107 DOI: 10.3390/cells11061041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Upregulation of glycolysis, induction of epithelial–mesenchymal transition (EMT) and macroautophagy (hereafter autophagy), are phenotypic changes that occur in tumor cells, in response to similar stimuli, either tumor cell-autonomous or from the tumor microenvironment. Available evidence, herein reviewed, suggests that glycolysis can play a causative role in the induction of EMT and autophagy in tumor cells. Thus, glycolysis has been shown to induce EMT and either induce or inhibit autophagy. Glycolysis-induced autophagy occurs both in the presence (glucose starvation) or absence (glucose sufficiency) of metabolic stress. In order to explain these, in part, contradictory experimental observations, we propose that in the presence of stimuli, tumor cells respond by upregulating glycolysis, which will then induce EMT and inhibit autophagy. In the presence of stimuli and glucose starvation, upregulated glycolysis leads to adenosine monophosphate-activated protein kinase (AMPK) activation and autophagy induction. In the presence of stimuli and glucose sufficiency, upregulated glycolytic enzymes (e.g., aldolase or glyceraldehyde 3-phosphate dehydrogenase) or decreased levels of glycolytic metabolites (e.g., dihydroxyacetone phosphate) may mimic a situation of metabolic stress (herein referred to as “pseudostarvation”), leading, directly or indirectly, to AMPK activation and autophagy induction. We also discuss possible mechanisms, whereby glycolysis can induce a mixed mesenchymal/autophagic phenotype in tumor cells. Subsequently, we address unresolved problems in this field and possible therapeutic consequences.
Collapse
|