1
|
Chen C, Wei Z. Mechanisms and molecular characterization of relapsed/refractory neuroblastomas. Front Oncol 2025; 15:1555419. [PMID: 40115016 PMCID: PMC11922920 DOI: 10.3389/fonc.2025.1555419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Relapsed/refractory neuroblastoma is a type of malignant solid tumor with a very poor prognosis in children. Its pathogenesis is complex, involving multiple molecular pathways and genetic alterations. Recent studies have shown that MYCN amplification, ALK mutation, TERT promoter mutation, p53 pathway inactivation, and chromosomal instability are the key mechanisms and molecular characteristics of relapsed/refractory neuroblastoma. Precision treatment strategies targeting these molecular mechanisms have shown certain prospects in preclinical studies and clinical practice. This review focuses on the relevant mechanisms and molecular characteristics of relapsed/refractory neuroblastoma, explores its relationship with treatment response and clinical prognosis, and briefly introduces the current treatment strategies to provide a theoretical basis for the development of novel and personalized therapeutic regimens to improve the prognosis of children.
Collapse
Affiliation(s)
- Chong Chen
- Department of Clinical Laboratory, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Zixuan Wei
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pediatric Oncology, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pediatric Oncology, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
2
|
Bukkuri A, Andersson S, Mazariegos MS, Brown JS, Hammarlund EU, Mohlin S. Cell types or cell states? An investigation of adrenergic and mesenchymal cell phenotypes in neuroblastoma. iScience 2024; 27:111433. [PMID: 39687008 PMCID: PMC11648246 DOI: 10.1016/j.isci.2024.111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/28/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Neuroblastoma exhibits two cellular phenotypes: therapy-sensitive adrenergic (ADRN) and therapy-resistant mesenchymal (MES). To understand treatment response, it is important to elucidate how these phenotypes impact the dynamics of cancer cell populations and whether they represent distinct cell types or dynamic cell states. Here, we use an integrated experimental and mathematical modeling approach. We experimentally measure the fractions of ADRN and MES phenotypes under baseline (untreated) conditions and under repeated treatment cycles. We develop evolutionary game theoretic models predicting how the populations would respond if ADRN and MES phenotypes (1) are distinct cell types or (2) represent dynamic cell states and fit these models to the experimental data. We find that, although cells may undergo an ADRN to MES phenotypic switch under treatment, the best-fit model sees ADRN and MES as distinct cell types. Differential proliferation and survival of these two cell types, and not cell-state switching, drive therapeutic response.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- University of Pittsburgh School of Medicine, Department of Computational and Systems Biology, Pittsburgh, PA, USA
- The Center for Philosophy of Science at the University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Experimental Sciences, Lund University, Lund, Sweden
| | - Stina Andersson
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
| | - Marina S. Mazariegos
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
| | - Joel S. Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Emma U. Hammarlund
- Department of Experimental Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
| | - Sofie Mohlin
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Lund University Cancer Center, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Jahangiri L. Metabolic targeting of neuroblastoma, an update. Cancer Lett 2024; 611:217393. [PMID: 39681211 DOI: 10.1016/j.canlet.2024.217393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Neuroblastoma is a paediatric cancer of the sympathetic nervous system that originates from the neural crest and can be categorised into stages and risk groups. Risk groups inform treatment options and high-risk cases bear a 50 % probability of relapse post-treatment remission. In neuroblastoma, MYCN amplification is the strongest predictor of unfavourable patient prognosis; circa 50 % of high-risk cases display MYCN amplification. This dismal prognosis is perhaps influenced by the MYCN-driven metabolic rewiring of these cells since the MYC family is indicated in the regulation of proliferation, cell death, metabolism, differentiation, and protein synthesis. This review aims to capture the most recent studies that investigate metabolic rewiring in MYCN-amplified and MYCN-activated cells from the perspective of alterations to glycolysis, the TCA cycle, and oxidative phosphorylation, in addition to changes to amino acid, nucleotide, and lipid metabolism that can be relevant to therapy. A better understanding of the metabolic profile of MYCN-amplified disease will facilitate the identification of effective treatment options and improve the prognosis of high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Leila Jahangiri
- School of Science and Technology, Nottingham Trent University, Clifton Site, Nottingham, NG11 8NS, UK; Division of Cellular and Molecular Pathology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
4
|
Jahangiri L. Updates on liquid biopsies in neuroblastoma for treatment response, relapse and recurrence assessment. Cancer Genet 2024; 288-289:32-39. [PMID: 39241395 DOI: 10.1016/j.cancergen.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Neuroblastoma is a paediatric malignancy of the sympathoadrenal or Schwann cells derived from the neural crest. Risk stratification in neuroblastoma is informed by MYCN amplification, age, stage, ploidy, and segmental chromosomal alterations. High-risk cases bear dismal overall survival. A panel of pathology and imaging modalities are utilised for diagnosis, while treatment strategies depend on the risk group. Despite this, relapse can occur in 50% of high-risk neuroblastoma patients in remission post-treatment. Liquid biopsies typically comprise the sampling of the peripheral blood and are attractive since they are less invasive than surgical tumour tissue biopsies. Liquid biopsies retrieve circulating tumour DNA and circulating tumour RNA released by tumours in addition to circulating tumour cells. These biological materials can be utilised to analyse tumour genetic alterations. Monitoring tumour-derived molecular information can assist diagnostics, targeted therapy selection, and treatment while reflecting minimal residual disease, relapse, and recurrence. This study aims to review the latest research on liquid biopsies for disease diagnosis, assessing treatment efficacy, minimal residual disease, relapse, and recurrence in neuroblastoma. A deeper understanding of the application of liquid biopsies could inform future prospective clinical trials, and in time, facilitate their routine implementation in clinical practice.
Collapse
Affiliation(s)
- Leila Jahangiri
- School of Science and Technology, Nottingham Trent University, Clifton Site, Nottingham NG11 8NS, UK; Division of Cellular and Molecular Pathology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
5
|
Lucena-Padros H, Bravo-Gil N, Tous C, Rojano E, Seoane-Zonjic P, Fernández RM, Ranea JAG, Antiñolo G, Borrego S. Bioinformatics Prediction for Network-Based Integrative Multi-Omics Expression Data Analysis in Hirschsprung Disease. Biomolecules 2024; 14:164. [PMID: 38397401 PMCID: PMC10886964 DOI: 10.3390/biom14020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Hirschsprung's disease (HSCR) is a rare developmental disorder in which enteric ganglia are missing along a portion of the intestine. HSCR has a complex inheritance, with RET as the major disease-causing gene. However, the pathogenesis of HSCR is still not completely understood. Therefore, we applied a computational approach based on multi-omics network characterization and clustering analysis for HSCR-related gene/miRNA identification and biomarker discovery. Protein-protein interaction (PPI) and miRNA-target interaction (MTI) networks were analyzed by DPClusO and BiClusO, respectively, and finally, the biomarker potential of miRNAs was computationally screened by miRNA-BD. In this study, a total of 55 significant gene-disease modules were identified, allowing us to propose 178 new HSCR candidate genes and two biological pathways. Moreover, we identified 12 key miRNAs with biomarker potential among 137 predicted HSCR-associated miRNAs. Functional analysis of new candidates showed that enrichment terms related to gene ontology (GO) and pathways were associated with HSCR. In conclusion, this approach has allowed us to decipher new clues of the etiopathogenesis of HSCR, although molecular experiments are further needed for clinical validations.
Collapse
Affiliation(s)
- Helena Lucena-Padros
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Cristina Tous
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Elena Rojano
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
| | - Pedro Seoane-Zonjic
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 29071 Malaga, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Juan A. G. Ranea
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 29071 Malaga, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
6
|
Jahangiri L. Neuroblastoma Interaction with the Tumour Microenvironment and Its Implications for Treatment and Disease Progression. Curr Oncol 2023; 30:9116-9140. [PMID: 37887559 PMCID: PMC10605583 DOI: 10.3390/curroncol30100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Neuroblastoma, a paediatric malignancy of the peripheral nervous system, displays a wide range of clinical outcomes, including regression to fatality despite extensive treatment. Neuroblastoma tumours display a complex interplay with their surrounding environment, known as the tumour microenvironment, which may affect disease progression and patient prognosis. This study aimed to dissect the ways in which neuroblastoma biology, treatment, prognosis, progression, and relapse are linked with the extracellular matrix, the dichotomous identities of neuroblastoma, various regulatory proteins and RNA, and extracellular vesicles within the backdrop of the tumour microenvironment. In addition, other aspects, such as immune cell infiltration, therapeutic options including monoclonal antibodies and small molecule inhibitors; and the ways in which these may affect disease progression and immunosuppression within the context of the neuroblastoma tumour microenvironment, are addressed. Such studies may shed light on useful therapeutic targets within the tumour microenvironment that may benefit groups of NB patients. Ultimately, a detailed understanding of these aspects will enable the neuroblastoma scientific community to improve treatment options, patient outcomes, and quality of life.
Collapse
Affiliation(s)
- Leila Jahangiri
- School of Science and Technology, Nottingham Trent University, Clifton Site, Nottingham NG11 8NS, UK;
- Division of Cellular and Molecular Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
7
|
Ferguson KM, Gillen SL, Chaytor L, Poon E, Marcos D, Gomez RL, Woods LM, Mykhaylechko L, Elfari L, Martins da Costa B, Jamin Y, Carroll JS, Chesler L, Ali FR, Philpott A. Palbociclib releases the latent differentiation capacity of neuroblastoma cells. Dev Cell 2023; 58:1967-1982.e8. [PMID: 37734383 DOI: 10.1016/j.devcel.2023.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
Neuroblastoma is the most common extracranial solid tumor in infants, arising from developmentally stalled neural crest-derived cells. Driving tumor differentiation is a promising therapeutic approach for this devastating disease. Here, we show that the CDK4/6 inhibitor palbociclib not only inhibits proliferation but induces extensive neuronal differentiation of adrenergic neuroblastoma cells. Palbociclib-mediated differentiation is manifested by extensive phenotypic and transcriptional changes accompanied by the establishment of an epigenetic program driving expression of mature neuronal features. In vivo palbociclib significantly inhibits tumor growth in mouse neuroblastoma models. Furthermore, dual treatment with retinoic acid resets the oncogenic adrenergic core regulatory circuit of neuroblastoma cells, further suppresses proliferation, and can enhance differentiation, altering gene expression in ways that significantly correlate with improved patient survival. We therefore identify palbociclib as a therapeutic approach to dramatically enhance neuroblastoma differentiation efficacy that could be used in combination with retinoic acid to improve patient outcomes.
Collapse
Affiliation(s)
- Kirsty M Ferguson
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Sarah L Gillen
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Lewis Chaytor
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research (ICR) and Royal Marsden NHS Trust, Sutton SM2 5NG, UK
| | - Daniel Marcos
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Roshna Lawrence Gomez
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, P.O. Box 505055, Dubai, United Arab Emirates
| | - Laura M Woods
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Lidiya Mykhaylechko
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Louis Elfari
- Wellcome-MRC Cambridge Stem Cell Institute Advanced Imaging Facility, Cambridge CB2 0AW, UK
| | - Barbara Martins da Costa
- Division of Clinical Studies, The Institute of Cancer Research (ICR) and Royal Marsden NHS Trust, Sutton SM2 5NG, UK
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research (ICR) and Royal Marsden NHS Trust, Sutton SM2 5NG, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research (ICR) and Royal Marsden NHS Trust, Sutton SM2 5NG, UK
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, P.O. Box 505055, Dubai, United Arab Emirates
| | - Anna Philpott
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK.
| |
Collapse
|
8
|
Smirnov A, Melino G, Candi E. Gene expression in organoids: an expanding horizon. Biol Direct 2023; 18:11. [PMID: 36964575 PMCID: PMC10038780 DOI: 10.1186/s13062-023-00360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/26/2023] Open
Abstract
Recent development of human three-dimensional organoid cultures has opened new doors and opportunities ranging from modelling human development in vitro to personalised cancer therapies. These new in vitro systems are opening new horizons to the classic understanding of human development and disease. However, the complexity and heterogeneity of these models requires cutting-edge techniques to capture and trace global changes in gene expression to enable identification of key players and uncover the underlying molecular mechanisms. Rapid development of sequencing approaches made possible global transcriptome analyses and epigenetic profiling. Despite challenges in organoid culture and handling, these techniques are now being adapted to embrace organoids derived from a wide range of human tissues. Here, we review current state-of-the-art multi-omics technologies, such as single-cell transcriptomics and chromatin accessibility assays, employed to study organoids as a model for development and a platform for precision medicine.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166, Rome, Italy.
| |
Collapse
|