1
|
Ravichandran S, Bhuvanendran N, Selva Kumar R, Balla P, Lee SY, Xu Q, Su H. Polyhedron shaped palladium nanostructures embedded on MoO 2/PANI-g-C 3N 4 as high performance and durable electrocatalyst for oxygen reduction reaction. J Colloid Interface Sci 2023; 629:357-369. [PMID: 36162393 DOI: 10.1016/j.jcis.2022.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
A hybrid catalyst support anchoring a noble metal catalyst could be a promising material for building interfacial bonding between metallic nanostructures and polymer functionalized carbon supports to improve the kinetics of oxygen reduction reaction (ORR). This study successfully prepared a polyhedron nanostructured Pd and MoO2-embedded polyaniline-functionalized graphitized carbon nitride (PANI-g-C3N4) surface using a chemical reduction method. The Pd-Mo/PANI-g-C3N4 achieved an ORR activity of 0.27 mA µg-1 and 1.14 mA cm-2 at 0.85 V, which were 4.5 times higher than those of commercial 20% Pt/C catalyst (0.06 mA µg-1 and 0.14 mA cm-2). In addition, the Pd-Mo/PANI-g-C3N4 retained ∼ 77.5% of its initial mass activity after 10,000 cycles, with only 30 mV half-wave potential reduction. Further, the engineered potential active sites in the catalyst material verified the significant improvement in the ORR activity of the catalyst with increased life-time, and theoretical calculations revealed that the synergistic effect of the catalytic components enhanced the ORR kinetics of the active sites.
Collapse
Affiliation(s)
- Sabarinathan Ravichandran
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; School of Material Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | | | - R Selva Kumar
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Putrakumar Balla
- Engineering Research Centre for Hydrogen Energy and New Materials, College of Rare Earths (CoRE), Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Sae Youn Lee
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Qian Xu
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Huaneng Su
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Promsuwan K, Saichanapan J, Soleh A, Saisahas K, Ho Phua C, Wangchuk S, Samoson K, Kanatharana P, Thavarungkul P, Limbut W. Polyaniline-Coated Glassy Carbon Microspheres Decorated with Nano-Palladium as a New Electrocatalyst for Methanol Oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Catalytic electrodes for the oxygen reduction reaction based on co-doped (B-N, Si-N, S-N) carbon quantum dots and anion exchange ionomer. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Nanostructured, Metal-Free Electrodes for the Oxygen Reduction Reaction Containing Nitrogen-Doped Carbon Quantum Dots and a Hydroxide Ion-Conducting Ionomer. Molecules 2022; 27:molecules27061832. [PMID: 35335194 PMCID: PMC8953787 DOI: 10.3390/molecules27061832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
In this work, we studied the combination of nitrogen-doped carbon quantum dots (N-CQD), a hydroxide-ion conducting ionomer based on polysulfone (PSU) and polyaniline (PANI), to explore the complementary properties of these materials in high-performance nanostructured electrodes for the oxygen reduction reaction (ORR) in alkaline solution. N-CQD were made by hydrothermal synthesis from glucosamine hydrochloride (GAH) or glucosamine hydrochloride and N-Octylamine (GAH-Oct), and PSU were quaternized with trimethylamine (PSU-TMA). The nanocomposite electrodes were prepared on carbon paper by drop-casting. Furthermore, we succeeded in preparing PSU-TMA + PANI + GAH-Oct fibers by electrospinning. The capacitance of the electrodes was investigated by cyclic voltammetry and impedance spectroscopy, which gave similar trends. The ORR was investigated by linear sweep voltammetry at rotating disk electrode speeds between 250 and 2000 rpm in an oxygen-saturated 1 M KOH solution. Koutecky–Levich plots showed that four electrons were exchanged for nanocomposite electrodes containing CQD. The highest reduction currents were measured for the electrodes containing GAH-Oct. The Tafel plots gave the lowest slope and the most positive half-wave potential for PSU-TMA + PANI + GAH-Oct fibers. The best electrocatalytic activity of this electrode could be related to the high amount of graphitic nitrogen in GAH-Oct. Long-term cycling tests showed no significant modification of the onset potential, but a change of the current in the mass transport limited region, indicated the evolution of the microstructure of the nanocomposite ORR electrode modifying the mass transport conditions during the first 400 cycles before reaching stationary conditions. FTIR spectra were used to study possible electrode degradation after the ORR in 1 M KOH: the only change was due to the reaction of PANI emeraldine salt to emeraldine base, whereas the other constituents of the multiphase electrode did not show any degradation.
Collapse
|
5
|
Huang Y, Bao F, Ji M, Hu Y, Huang L, Liu H, Yu J, Cong G, Zhu C, Xu J. A polyaniline-modified electrode surface for boosting the electrocatalysis towards the hydrogen evolution reaction and ethanol oxidation reaction. Chem Commun (Camb) 2021; 57:13792-13795. [PMID: 34870647 DOI: 10.1039/d1cc04163k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, polyaniline (PANI) is reported loaded on carbon paper to modify the carbon paper-PANI-Pt electrode surface, tailoring the electrocatalytic capability towards the hydrogen evolution reaction and ethanol oxidation reaction. The reasons for the enhancement by the PANI layer are attributed to the hydrophilic electrode surface, uniform dispersion of Pt, and large electrochemical active surface.
Collapse
Affiliation(s)
- Yankun Huang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Feng Bao
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Muwei Ji
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Yanzhao Hu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Liu Huang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Huichao Liu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jiali Yu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Guangtao Cong
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Caizhen Zhu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
6
|
Promsuwan K, Soleh A, Saisahas K, Saichanapan J, Thiangchanya A, Phonchai A, Limbut W. Micro-colloidal catalyst of palladium nanoparticles on polyaniline-coated carbon microspheres for a non-enzymatic hydrogen peroxide sensor. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
A synergistic approach of Vulcan carbon and CeO2 in their composite as an efficient oxygen reduction reaction catalyst. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01461-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Zheng H, Matseke MS, Munonde TS. The unique Pd@Pt/C core-shell nanoparticles as methanol-tolerant catalysts using sonochemical synthesis. ULTRASONICS SONOCHEMISTRY 2019; 57:166-171. [PMID: 31208611 DOI: 10.1016/j.ultsonch.2019.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
Over the past decades, there were a few reports on the use of sonochemical method to prepare noble metals catalysts for fuel cells. However, the synthetic processes were conducted under high frequency (200 kHz)/long reaction time in most cases. In this work, Pd and PdxPt nanoparticles were prepared by sonochemical method under low frequency (20 kHz) in a shorter time (20-40 mins). In the first time, a sequentialsonochemical synthesis was explored to achieve a core/shell structure of PdxPt nanoparticles. Consequently, the unique core-shell structure was formed with two shells surrounding the Pd core. The Pd core was firstly grown. In the second step, the Pd2+ ion existing in the Pd core reduced simultaneously with Pt4+ ion in the solution as the first layer of PdPt alloy. Further, the Pt layer was formed subsequently. The Pd-based catalysts exhibited a superior ORR selective activity and exceptional methanol-tolerance property compared with the commercial Pt/C catalyst. In 0.5 M CH3OH + 0.5MH2SO4 solution, the best performance was achieved on Pd3Pt/C catalyst with increased overpotential of 24 mV. However, overpotentials was increased 174 mV on commercial Pt/C catalyst. The excellent performance of the Pd3Pt/C catalyst is ascribed to its combination of preferable growth of the Pd (1 1 1) plane, small particle size (∼4 nm), unique core/shell structure as well as the electronic effects between Pd and Pt. These results have demonstrated that the sequential ultrasonic synthesis is an effective method for the synthesis of binary/trinary catalysts in a green approach.
Collapse
Affiliation(s)
- Haitao Zheng
- Energy Centre, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa.
| | - Mphoma S Matseke
- Energy Centre, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa; University of Johannesburg, PO Box 524, Johannesburg 2006, South Africa
| | - Tshimangadzo S Munonde
- Energy Centre, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa; University of Johannesburg, PO Box 524, Johannesburg 2006, South Africa
| |
Collapse
|