1
|
Zhang Y, Zhang H, Chen T, An L. The co-adsorption of sulfate and metal ions on Al-doped graphene: a first principles study. J Mol Model 2023; 29:289. [PMID: 37612447 DOI: 10.1007/s00894-023-05694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
CONTEXT The co-adsorption of sulfate and metal ions on intrinsic and Al-doped graphene is investigated through first principles calculations. When SO42- ions exist only, both of intrinsic and Al-doped graphene can form stable adsorption configurations with SO42-. However, the presence of Cu2+/Ca2+/Zn2+/Mg2+ ions attenuates the interaction between intrinsic graphene and SO42-, resulting in weak physical adsorption between them, while Al-doped graphene can still constitute co-adsorption chemically with both SO42- and Cu2+/Ca2+/Zn2+/Mg2+ ions simultaneously. The sensitivity of Al-doped graphene towards co-adsorbed ions is in the order of SO42--Cu2+ > SO42--Zn2+ > SO42--Ca2+ > SO42--Mg2+. The research indicates Al-doped graphene could be a promising material for sensing sulfate ions under the presence of various metal ions. METHODS All of the calculations were carried out by using a first principles method based on density functional theory (DFT). The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional was selected to describe electron exchange-correlation energy. The double numerical plus polarization (DNP) was employed as the basis set. The conductor-like screening model (COSMO) was implemented to simulate the aqueous solvent effect.
Collapse
Affiliation(s)
- Yan Zhang
- College of Mechanical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Hong Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, China.
| | - Tao Chen
- College of Mechanical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Libao An
- College of Mechanical Engineering, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
2
|
Atlan C, Chatelier C, Martens I, Dupraz M, Viola A, Li N, Gao L, Leake SJ, Schülli TU, Eymery J, Maillard F, Richard MI. Imaging the strain evolution of a platinum nanoparticle under electrochemical control. NATURE MATERIALS 2023:10.1038/s41563-023-01528-x. [PMID: 37095227 DOI: 10.1038/s41563-023-01528-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
Surface strain is widely employed in gas phase catalysis and electrocatalysis to control the binding energies of adsorbates on active sites. However, in situ or operando strain measurements are experimentally challenging, especially on nanomaterials. Here we exploit coherent diffraction at the new fourth-generation Extremely Brilliant Source of the European Synchrotron Radiation Facility to map and quantify strain within individual Pt catalyst nanoparticles under electrochemical control. Three-dimensional nanoresolution strain microscopy, together with density functional theory and atomistic simulations, show evidence of heterogeneous and potential-dependent strain distribution between highly coordinated ({100} and {111} facets) and undercoordinated atoms (edges and corners), as well as evidence of strain propagation from the surface to the bulk of the nanoparticle. These dynamic structural relationships directly inform the design of strain-engineered nanocatalysts for energy storage and conversion applications.
Collapse
Affiliation(s)
- Clément Atlan
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, Grenoble, France.
- ESRF - The European Synchrotron, Grenoble, France.
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, Grenoble, France.
| | - Corentin Chatelier
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, Grenoble, France.
- ESRF - The European Synchrotron, Grenoble, France.
| | | | - Maxime Dupraz
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, Grenoble, France
- ESRF - The European Synchrotron, Grenoble, France
| | - Arnaud Viola
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, Grenoble, France
| | - Ni Li
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, Grenoble, France
- ESRF - The European Synchrotron, Grenoble, France
| | - Lu Gao
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | | | - Joël Eymery
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, Grenoble, France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, Grenoble, France.
| | - Marie-Ingrid Richard
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, Grenoble, France.
- ESRF - The European Synchrotron, Grenoble, France.
| |
Collapse
|
3
|
Say Z, Kaya M, Kaderoğlu Ç, Koçak Y, Ercan KE, Sika-Nartey AT, Jalal A, Turk AA, Langhammer C, Jahangirzadeh Varjovi M, Durgun E, Ozensoy E. Unraveling Molecular Fingerprints of Catalytic Sulfur Poisoning at the Nanometer Scale with Near-Field Infrared Spectroscopy. J Am Chem Soc 2022; 144:8848-8860. [PMID: 35486918 PMCID: PMC9121382 DOI: 10.1021/jacs.2c03088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/28/2022]
Abstract
Fundamental understanding of catalytic deactivation phenomena such as sulfur poisoning occurring on metal/metal-oxide interfaces is essential for the development of high-performance heterogeneous catalysts with extended lifetimes. Unambiguous identification of catalytic poisoning species requires experimental methods simultaneously delivering accurate information regarding adsorption sites and adsorption geometries of adsorbates with nanometer-scale spatial resolution, as well as their detailed chemical structure and surface functional groups. However, to date, it has not been possible to study catalytic sulfur poisoning of metal/metal-oxide interfaces at the nanometer scale without sacrificing chemical definition. Here, we demonstrate that near-field nano-infrared spectroscopy can effectively identify the chemical nature, adsorption sites, and adsorption geometries of sulfur-based catalytic poisons on a Pd(nanodisk)/Al2O3 (thin-film) planar model catalyst surface at the nanometer scale. The current results reveal striking variations in the nature of sulfate species from one nanoparticle to another, vast alterations of sulfur poisoning on a single Pd nanoparticle as well as at the assortment of sulfate species at the active metal-metal-oxide support interfacial sites. These findings provide critical molecular-level insights crucial for the development of long-lifetime precious metal catalysts resistant toward deactivation by sulfur.
Collapse
Affiliation(s)
- Zafer Say
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06510 Ankara, Turkey
- Department
of Physics, Chalmers University of Technology, SE-412-96 Gothenburg, Sweden
| | - Melike Kaya
- Institute
of Acceleration Technologies, Ankara University, 06830 Ankara, Turkey
- Turkish
Accelerator and Radiation Laboratory (TARLA), 06830 Ankara, Turkey
| | - Çağıl Kaderoğlu
- Turkish
Accelerator and Radiation Laboratory (TARLA), 06830 Ankara, Turkey
- Department
of Physics Engineering, Ankara University, 06100 Ankara, Turkey
| | - Yusuf Koçak
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Kerem Emre Ercan
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | | | - Ahsan Jalal
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Ahmet Arda Turk
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, SE-412-96 Gothenburg, Sweden
| | | | - Engin Durgun
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Bilkent, Ankara, Turkey
| | - Emrah Ozensoy
- Department
of Chemistry, Bilkent University, 06800 Ankara, Turkey
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Bilkent, Ankara, Turkey
| |
Collapse
|
4
|
Theoretical Study on the Electrochemical Catalytic Activity of Au-Doped Pt Electrode for Nitrogen Monoxide. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In order to gradually reduce automobile exhaust pollution and improve fuel quality, the NOx sensor, which can be monitored in real time in an automobile engine’s electronic control system, has become an indispensable part of the automobile lean burn system. In these types of NOx sensors, Au-doped platinum electrodes have received great attention due to their selectivity towards NO. However, the reaction process of NO gas on the Au-doped platinum electrode in the sensor and the possible regulation mechanism is still unclear. In this paper, the density functional theory (DFT) was used to analyze the effect of Au-doped Pt electrodes on the performance of nitrogen oxide sensors in automobiles. Firstly, the adsorption energies of NO molecules on pure Pt and Au/Pt surfaces were compared. The adsorption and dissociation of NO on Pt substrates doped with Au monomers, dimers, and trimers were investigated. These results showed that Au can effectively weaken the adsorption energy of NO molecules on a Pt surface. It was noted that with the increase in the number of Au atoms on the surface of Pt(111), the adsorption capacity of NO molecules on the alloy surface becomes weaker. When observing the transition state of NO decomposition on three different alloy surfaces, the study showed that the activation energy and reaction heat of NO dissociation increased. It further showed that doping with Au increased the activation energy of NO decomposition, thereby effectively inhibiting the decomposition of NO.
Collapse
|
5
|
Evaluation of (Z)-5-(Azulen-1-ylmethylene)-2-thioxothiazolidin-4-ones Properties Using Quantum Mechanical Calculations. Symmetry (Basel) 2021. [DOI: 10.3390/sym13081462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Derivatives of (Z)-5-(azulen-1-ylmethylene)-2-thioxothiazolidin-4-one are reported as heavy metal (HM) ligands in heterogeneous systems based on chemically modified electrodes. Their ability to coordinate HMs ions has recently been shown to be very selective. In this context, an additional computer-assisted study of their structure was performed using density functional theory (DFT) to achieve a complex structural analysis. Specific molecular descriptors and properties related to their reactivity and electrochemical behaviour were calculated. The correlation between certain quantum parameters associated with the general chemical reactivity and the complexing properties of the modified electrodes based on these ligands was carried out to facilitate the design of molecular sensors. Good linear correlations between DFT-calculated HOMO/LUMO energies and experimental redox potentials were found. A good agreement between the chemical shifts predicted by the DFT method and those determined experimentally from NMR data for these ligands demonstrated the accuracy of the calculations to assess the structural data. Such a computational approach can be used to evaluate other properties, such as electrochemical properties for similar azulene derivatives.
Collapse
|
8
|
Abstract
The adsorption of O2 on Pt(111) was studied with Density Functional Theory calculations. Various adsorbed states of O2 were evaluated on clean and OH/H2O-covered Pt(111) surfaces at the solid/gas and solid/liquid interfaces. The results reveal that the adsorption of O2 on OH/H2O-covered Pt(111) surface starts with the physical adsorption of O2. Two other adsorption states are reachable from the physisorbed state, the end-on, and bridging chemisorbed O2. Analysis of the energetics of these adsorption states shows that O2 physically adsorbed at the OH/H2O-covered Pt( 111) surface is a high energy state that requires activation to transition to the end-on chemisorbed O2 state. On the other hand, the end-on chemisorbed state can transition to the bridging chemisorbed state with only a small activation energy when a nearby Pt adsorption site is available. Frequency analysis of the physisorbed, end-on, and bridging adsorption states shows that adsorbed O2 stretching frequencies are close to 1400, 1300, and 900 cm-1, respectively.
Collapse
|