1
|
Ferriday TB, Nuggehalli Sampathkumar S, Mensi MD, Middleton PH, Van Herle J, Kolhe ML. Tuning Stainless Steel Oxide Layers through Potential Cycling─AEM Water Electrolysis Free of Critical Raw Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29963-29978. [PMID: 38809814 PMCID: PMC11181284 DOI: 10.1021/acsami.4c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Anion exchange membrane water electrolyzers (AEMWEs) have an intrinsic advantage over acidic proton exchange membrane water electrolyzers through their ability to use inexpensive, stable materials such as stainless steel (SS) to catalyze the sluggish oxygen evolution reaction (OER). As such, the study of active oxide layers on SS has garnered great interest. Potential cycling is a means to create such active oxide layers in situ as they are readily formed in alkaline solutions when exposed to elevated potentials. Cycling conditions in the literature are rife with unexplained variations, and a complete account of how these variations affect the activity and constitution of SS oxide layers remains unreported, along with their influence on AEMWE performance. In this paper, we seek to fill this gap in the literature by strategically cycling SS felt (SSF) electrodes under different scan rates and ranges. The SSF anodes were rapidly activated within the first 50 cycles, as shown by the 10-fold decline in charge transfer resistance, and the subsequent 1000 cycles tuned the metal oxide surface composition. Cycling the Ni redox couple (RC) increases Ni content, which is further enhanced by lowering the cycling rate, while cycling the Fe RC increases Cr content. Fair OER activity was uncovered through cycling the Ni RC, while Fe cycling produced SSF electrodes active toward both the OER and the hydrogen evolution reaction (HER). This indicates that inert SSF electrodes can be activated to become efficient OER and HER electrodes. To this effect, a single-cell AEMWE without any traditional catalyst or ionomer generated 1.0 A cm-2 at 1.94 V ± 13.3 mV with an SSF anode, showing a fair performance for a cell free of critical raw materials.
Collapse
Affiliation(s)
- Thomas Benjamin Ferriday
- Department
of Engineering, University of Agder, Jon Lilletuns vei 9, Grimstad, 4879 Agder, Norway
- Group
of Energy Materials, Swiss Federal Institute
of Technology, Lausanne, Rue de l’Industrie
17, Sion, 1951 Valais, Switzerland
| | - Suhas Nuggehalli Sampathkumar
- Department
of Engineering, University of Agder, Jon Lilletuns vei 9, Grimstad, 4879 Agder, Norway
- Group
of Energy Materials, Swiss Federal Institute
of Technology, Lausanne, Rue de l’Industrie
17, Sion, 1951 Valais, Switzerland
| | - Mounir Driss Mensi
- X-Ray
Diffraction and Surface Analytics Facility, Swiss Federal Institute of Technology, Lausanne, Rue de l’Industrie 17, Sion, 1951 Valais, Switzerland
| | - Peter Hugh Middleton
- Department
of Engineering, University of Agder, Jon Lilletuns vei 9, Grimstad, 4879 Agder, Norway
- Group
of Energy Materials, Swiss Federal Institute
of Technology, Lausanne, Rue de l’Industrie
17, Sion, 1951 Valais, Switzerland
| | - Jan Van Herle
- Department
of Engineering, University of Agder, Jon Lilletuns vei 9, Grimstad, 4879 Agder, Norway
- Group
of Energy Materials, Swiss Federal Institute
of Technology, Lausanne, Rue de l’Industrie
17, Sion, 1951 Valais, Switzerland
| | - Mohan Lal Kolhe
- Department
of Engineering, University of Agder, Jon Lilletuns vei 9, Grimstad, 4879 Agder, Norway
| |
Collapse
|
2
|
Magnier L, Cossard G, Martin V, Pascal C, Roche V, Sibert E, Shchedrina I, Bousquet R, Parry V, Chatenet M. Fe-Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline media. NATURE MATERIALS 2024; 23:252-261. [PMID: 38216724 DOI: 10.1038/s41563-023-01744-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/30/2023] [Indexed: 01/14/2024]
Abstract
NiFe-based oxo-hydroxides are highly active for the oxygen evolution reaction but require complex synthesis and are poorly durable when deposited on foreign supports. Herein we demonstrate that easily processable, Earth-abundant and cheap Fe-Ni alloys spontaneously develop a highly active NiFe oxo-hydroxide surface, exsolved upon electrochemical activation. While the manufacturing process and the initial surface state of the alloys do not impact the oxygen evolution reaction performance, the growth/composition of the NiFe oxo-hydroxide surface layer depends on the alloying elements and initial atomic Fe/Ni ratio, hence driving oxygen evolution reaction activity. Whatever the initial Fe/Ni ratio of the Fe-Ni alloy (varying between 0.004 and 7.4), the best oxygen evolution reaction performance (beyond that of commercial IrO2) and durability was obtained for a surface Fe/Ni ratio between 0.2 and 0.4 and includes numerous active sites (high NiIII/NiII capacitive response) and high efficiency (high Fe/Ni ratio). This knowledge paves the way to active and durable Fe-Ni alloy oxygen-evolving electrodes for alkaline water electrolysers.
Collapse
Affiliation(s)
- Lucile Magnier
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), SIMAP, Grenoble, France
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Garance Cossard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Vincent Martin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Céline Pascal
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), SIMAP, Grenoble, France
| | - Virginie Roche
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Eric Sibert
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Irina Shchedrina
- Pierre Chevenard Research Center, APERAM Alloys Imphy, Imphy, France
| | | | - Valérie Parry
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), SIMAP, Grenoble, France
| | - Marian Chatenet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France.
| |
Collapse
|
3
|
Hwang SY, Maeng JY, Park GE, Yang SY, Kim SY, Rhee CK, Sohn Y. New reaction path for long-chain hydrocarbons by electrochemical CO 2 and CO reduction over Au/stainless steel. CHEMOSPHERE 2023; 338:139616. [PMID: 37482308 DOI: 10.1016/j.chemosphere.2023.139616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
The Fischer-Tropsch (F-T) synthesis is recognized for its ability to produce long-chain hydrocarbons. In this study, we aimed to replicate F-T synthesis using electrochemical CO2 reduction and CO reduction reactions on a stainless steel (SS) support with a gold (Au) overlayer. Under CO2-saturated conditions, the presence of Au on the SS surface led to the formation of CH4 and a range of hydrocarbons (CnH2n and CnH2n+2, n = 2-7), while bare SS primarily produced hydrogen. The Au(10 nm)/SS exhibited the highest hydrocarbon production in CO2-saturated phosphate, indicating a synergistic effect at the Au-SS interface. In CO-saturated conditions, bare SS also produced long-chain hydrocarbons, but increasing Au thickness resulted in decreased production due to poor CO adsorption. Hydrocarbons were formed through both direct and indirect CO adsorption pathways. Anderson-Schulz-Flory analysis confirmed surface CO hydrogenation and C-C coupling polymerization following conventional F-T synthesis. The C2 hydrocarbons exhibited distinct behavior compared to C3-5 hydrocarbons, suggesting different reaction pathways. Despite low reduction product levels, our EC method successfully replicated F-T synthesis using the Au/SS electrode, providing valuable insights into C-C coupling mechanisms and electrochemical production of long-chain hydrocarbons. Depth-profiling X-ray photoelectron spectroscopy revealed significant changes in surface elemental compositions before and after EC reduction.
Collapse
Affiliation(s)
- Seon Young Hwang
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ju Young Maeng
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Go Eun Park
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seo Young Yang
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - So Young Kim
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Choong Kyun Rhee
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Youngku Sohn
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Karthik N, Chandrasekaran S, Edison TNJI, Atchudan R, Choi ST. Effect of femtosecond laser-texturing on the oxygen evolution reaction of the stainless-steel plate. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Todoroki N, Tsurumaki H, Shinomiya A, Wadayama T. Surface microstructures and oxygen evolution properties of cobalt oxide deposited on Ir(111) and Pt(111) single crystal substrates. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Naoto Todoroki
- Graduate School of Environmental Studies Tohoku University Sendai Japan
| | - Hiroto Tsurumaki
- Graduate School of Environmental Studies Tohoku University Sendai Japan
| | - Arata Shinomiya
- Graduate School of Environmental Studies Tohoku University Sendai Japan
| | | |
Collapse
|