1
|
Dong L, Wang R, Liu H, Xia G, Quan J, Guo L, Chen M. The complete chloroplast genome sequence of Malus × adstringens Zabel 'Hopa' (Rosaceae). Mitochondrial DNA B Resour 2024; 9:173-177. [PMID: 38282982 PMCID: PMC10812852 DOI: 10.1080/23802359.2023.2292158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/03/2023] [Indexed: 01/30/2024] Open
Abstract
Malus × adstringens Zabel 'Hopa' is an important crabapple cultivar with significant ornamental value. Here, we assembled its complete chloroplast (cp) genome using the next-generation sequencing technology to clarify the phylogenetic relationships in Malus. The total length of the complete chloroplast genome was 160,230 base pairs (bp) with a GC content of 36.50%, consisting of a large single-copy (LSC) region with a sequence length of 88,310 bp, a small single-copy (SSC) region with a sequence length of 19,196 bp, and a pair of inverted repeat (IR) regions of 26,362 bp. The complete chloroplast genome contained 128 genes, namely 84 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. In addition, 73 SSRs were found in the M. 'Hopa' cp genome. The phylogenetic relationship of M. 'Hopa' in Malus is closely related to M. spectabilis (Aiton) Borkh. and then to M. sieversii (Lebed.) M. Roem. Our results demonstrate that it is feasible to resolve the phylogenetic relationships of crabapple cultivars and identify their putative maternal lineages using cp genomic data.
Collapse
Affiliation(s)
- Leiming Dong
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, China
| | - Ruizhen Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, China
| | - Hengxing Liu
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, China
| | - Guowei Xia
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, China
| | - Jian Quan
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, China
| | - Ling Guo
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, China
| | - Minghui Chen
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, China
| |
Collapse
|
2
|
Comparative Analysis on the Codon Usage Pattern of the Chloroplast Genomes in Malus Species. Biochem Genet 2022; 61:1050-1064. [DOI: 10.1007/s10528-022-10302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
|
3
|
Miao H, Bao J, Li X, Ding Z, Tian X. Comparative analyses of chloroplast genomes in 'Red Fuji' apples: low rate of chloroplast genome mutations. PeerJ 2022; 10:e12927. [PMID: 35223207 PMCID: PMC8868015 DOI: 10.7717/peerj.12927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Fuji is a vital apple cultivar, and has been propagated clonally for nearly a century. The chloroplast genome variation of Fuji apples in China has not been investigated. METHODS This study used next-generation high-throughput sequencing and bioinformatics to compare and analyze the chloroplast genome of 24 Red Fuji varieties from nine regions in China. RESULTS The results showed that the 24 chloroplast genomes were highly conserved in genome size, structure, and organization. The length of the genomes ranged from 160,063 to 160,070 bp, and the GC content was 36.6%. Each of the 24 chloroplast genomes encoded 131 genes, including 84 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The results of repeat sequence detection were consistent; the most common sequence was forward repeats (53.1%), and the least common sequence was complementary repeats (4.1%). The chloroplast genome sequence of Red Fuji was highly conserved. Two indels were detected, but the PI value was 0, and there were no SNP loci. The chloroplast genome variation rate of Red Fuji was low.
Collapse
Affiliation(s)
- Haoyu Miao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| | - Jinbo Bao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| | - Xueli Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| | - Zhijie Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| | - Xinmin Tian
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| |
Collapse
|
4
|
Jiang M, Wang J, Chen M, Zhang H. Complete chloroplast genome of a rare and endangered plant species Osteomeles subrotunda: genomic features and phylogenetic relationships with other Rosaceae plants. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:762-768. [PMID: 33763572 PMCID: PMC7954488 DOI: 10.1080/23802359.2021.1881835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteomeles subrotunda is a rare and endangered plant species with extremely small populations. In our study, we sequenced the complete chloroplast (CP) genome of O. subrotunda and described its structural organization, and performed comparative genomic analyses with other Rosaceae CP genomes. The plastome of O. subrotunda was 159,902 bp in length with 36.6% GC content and contained a pair of inverted repeats of 26,367 bp which separated a large single-copy region of 87,933 bp and a small single-copy region of 19,235 bp. The CP genome included 130 genes, of which 85 were protein-coding genes, 37 were transfer RNAs, and eight were ribosomal RNAs. Two genes, rps19 and ycf1, which are located at the borders of IRB/SSC and IRB/LSC, were presumed to be pseudogenes. A total of 61 SSRs were detected, of which, 59 loci were mono-nucleotide repeats, and two were di-nucleotide repeats. The phylogenic analysis indicated that the 14 Rosaceae species were divided into three groups, among which O. subrotunda grouped with P. rupicola, E. japonica, P. pashia, C. japonica, S. torminalis, and M. florentina, and it was found to be a sister clade to C. japonica. Our newly sequenced CP genome of O. subrotunda will provide essential data for further studies on population genetics and biodiversity.
Collapse
Affiliation(s)
- Ming Jiang
- College of Life Sciences, Taizhou University, Taizhou, P. R. China
| | - Junfeng Wang
- Scientific Research Management Center, East China Medicinal Botanical Garden, Lishui, P. R. China
| | - Minghui Chen
- College of Life Sciences, Taizhou University, Taizhou, P. R. China
| | - Huijuan Zhang
- College of Life Sciences, Taizhou University, Taizhou, P. R. China
| |
Collapse
|
5
|
Zhao X, Yan M, Ding Y, Chen X, Yuan Z. The complete chloroplast genome of apple rootstock ‘M9’. Mitochondrial DNA B Resour 2019; 4:2187-2188. [PMID: 33365467 PMCID: PMC7687421 DOI: 10.1080/23802359.2019.1624642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The dwarf M9 (Malus domestica ‘M9’) rootstock is the most widely available Malus rootstock, here we report the complete chloroplast (cp) genome of ‘M9’ rootstock. The size of the complete cp genome was 159,926 bp, with the large-copy (LSC, 88,065 bp) regions, small single-copy (SSC, 19,157 bp) regions, and two inverted repeat regions (IRs, 26,352 bp each). It contained 110 genes, including 78 protein-coding genes, 28 transfer RNA genes (tRNA), and 4 ribosomal RNA genes (rRNA). A phylogenetic tree demonstrated that ‘M9’ rootstock was closely related to M. hupehensis, M. baccata, M. prunifolia, M. micromalus, and M. tschonoskii.
Collapse
Affiliation(s)
- Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Ming Yan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yu Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Xu X, Wen J, Wang W, Zheng W. The complete chloroplast genome of the threatened Prunus cerasoides, a rare winter blooming cherry in the Himalayan region. CONSERV GENET RESOUR 2018. [DOI: 10.1007/s12686-017-0859-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
The complete plastid genome of the endangered species midget crabapple (Malus micromalus). CONSERV GENET RESOUR 2018. [DOI: 10.1007/s12686-017-0867-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Gil HY, Kim SC. The plastome sequence of Ulleung Rowan, Sorbus ulleungensis (Rosaceae), a new endemic species on Ulleung Island, Korea. MITOCHONDRIAL DNA PART B-RESOURCES 2018; 3:284-285. [PMID: 33474144 PMCID: PMC7800943 DOI: 10.1080/23802359.2018.1443042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The complete chloroplast genome sequence of Sorbus ulleungensis, a recently described endemic species to Ulleung Island of Korea, was determined. The genome size was 159,632 bp in length with 36.5% GC content. It included a pair of inverted repeats (IRa and IRb) of 26,402 bp, which were separated by small single copy (SSC: 18,824 bp) and large single copy (LSC: 88,003 bp) regions. The cp genome contained 111 genes, including 78 protein coding genes, 29 tRNA genes, and four rRNA genes. Phylogenetic analysis of the combined 78 protein coding genes and four rRNA genes showed that S. ulleungensis was most closely related to Pyrus pyrifolia.
Collapse
Affiliation(s)
- Hee-Young Gil
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
9
|
Cheng H, Li J, Zhang H, Cai B, Gao Z, Qiao Y, Mi L. The complete chloroplast genome sequence of strawberry ( Fragaria × ananassa Duch.) and comparison with related species of Rosaceae. PeerJ 2017; 5:e3919. [PMID: 29038765 PMCID: PMC5641433 DOI: 10.7717/peerj.3919] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/22/2017] [Indexed: 11/20/2022] Open
Abstract
Compared with other members of the family Rosaceae, the chloroplast genomes of Fragaria species exhibit low variation, and this situation has limited phylogenetic analyses; thus, complete chloroplast genome sequencing of Fragaria species is needed. In this study, we sequenced the complete chloroplast genome of F. × ananassa 'Benihoppe' using the Illumina HiSeq 2500-PE150 platform and then performed a combination of de novo assembly and reference-guided mapping of contigs to generate complete chloroplast genome sequences. The chloroplast genome exhibits a typical quadripartite structure with a pair of inverted repeats (IRs, 25,936 bp) separated by large (LSC, 85,531 bp) and small (SSC, 18,146 bp) single-copy (SC) regions. The length of the F. × ananassa 'Benihoppe' chloroplast genome is 155,549 bp, representing the smallest Fragaria chloroplast genome observed to date. The genome encodes 112 unique genes, comprising 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Comparative analysis of the overall nucleotide sequence identity among ten complete chloroplast genomes confirmed that for both coding and non-coding regions in Rosaceae, SC regions exhibit higher sequence variation than IRs. The Ka/Ks ratio of most genes was less than 1, suggesting that most genes are under purifying selection. Moreover, the mVISTA results also showed a high degree of conservation in genome structure, gene order and gene content in Fragaria, particularly among three octoploid strawberries which were F. × ananassa 'Benihoppe', F. chiloensis (GP33) and F. virginiana (O477). However, when the sequences of the coding and non-coding regions of F. × ananassa 'Benihoppe' were compared in detail with those of F. chiloensis (GP33) and F. virginiana (O477), a number of SNPs and InDels were revealed by MEGA 7. Six non-coding regions (trnK-matK, trnS-trnG, atpF-atpH, trnC-petN, trnT-psbD and trnP-psaJ) with a percentage of variable sites greater than 1% and no less than five parsimony-informative sites were identified and may be useful for phylogenetic analysis of the genus Fragaria.
Collapse
Affiliation(s)
- Hui Cheng
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinfeng Li
- Laboratory of Fruit Tree, Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, Jurong, China
| | - Hong Zhang
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Binhua Cai
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihong Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yushan Qiao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lin Mi
- Laboratory of Fruit Tree, Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, Jurong, China
| |
Collapse
|
10
|
The complete chloroplast genome sequence of wild service tree Sorbus torminalis (L.) Crantz. CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-017-0701-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|