1
|
García-Meseguer AJ, Villastrigo A, Mirón-Gatón JM, Millán A, Velasco J, Muñoz I. Novel Microsatellite Loci, Cross-Species Validation of Multiplex Assays, and By-Catch Mitochondrial Genomes on Ochthebius Beetles from Supratidal Rockpools. INSECTS 2023; 14:881. [PMID: 37999080 PMCID: PMC10672297 DOI: 10.3390/insects14110881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Here we focus on designing, for the first time, microsatellite markers for evolutionary and ecological research on aquatic beetles from the genus Ochthebius (Coleoptera, Hydraenidae). Some of these non-model species, with high cryptic diversity, exclusively inhabit supratidal rockpools, extreme and highly dynamic habitats with important anthropogenic threats. We analysed 15 individuals of four species (O. lejolisii, O. subinteger, O. celatus, and O. quadricollis) across 10 localities from the Mediterranean coasts of Spain and Malta. Using next-generation sequencing technology, two libraries were constructed to interpret the species of the two subgenera present consistently (Ochthebius s. str., O. quadricollis; and Cobalius, the rest of the species). Finally, 20 markers (10 for each subgenus) were obtained and successfully tested by cross-validation in the four species under study. As a by-catch, we could retrieve the complete mitochondrial genomes of O. lejolisii, O. quadricollis, and O. subinteger. Interestingly, the mitochondrial genome of O. quadricollis exhibited high genetic variability compared to already published data. The novel SSR panels and mitochondrial genomes for Ochthebius will be valuable in future research on species identification, diversity, genetic structure, and population connectivity in highly dynamic and threatened habitats such as supratidal coastal rockpools.
Collapse
Affiliation(s)
| | - Adrián Villastrigo
- Division of Entomology, SNSB-Zoologische Staatssammlung München, 81247 Munich, Germany;
| | - Juana María Mirón-Gatón
- Ecology and Hydrology Department, University of Murcia, 30100 Murcia, Spain; (A.J.G.-M.); (J.M.M.-G.); (A.M.)
| | - Andrés Millán
- Ecology and Hydrology Department, University of Murcia, 30100 Murcia, Spain; (A.J.G.-M.); (J.M.M.-G.); (A.M.)
| | - Josefa Velasco
- Ecology and Hydrology Department, University of Murcia, 30100 Murcia, Spain; (A.J.G.-M.); (J.M.M.-G.); (A.M.)
| | - Irene Muñoz
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
2
|
Gomes PT, Rosse IC, Moraes LÂG, Kalapothakis E, de Azevedo CS, Cardoso DC, Cristiano MP. Genetic diversity and relatedness in captive collared peccaries Dicotyles tajacu (Linnaeus, 1758) (Cetartiodactyla: Tayassuidae) estimated by microsatellite genotyping using high-throughput sequencing: Implications for their conservation and reintroduction. Zoo Biol 2023; 42:789-796. [PMID: 37466265 DOI: 10.1002/zoo.21796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/04/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
The global population of Dicotyles tajacu (Linnaeus, 1758) (Cetartiodactyla: Tayassuidae), commonly known as the collared peccary and distributed in the Neotropics, is currently in decline due to anthropogenic pressures. In this study, five microsatellite loci were used to genetically characterize a group of 20 captive-born collared peccaries intended for reintroduction. This study aimed to evaluate the genetic diversity and relatedness of captive individuals using microsatellite markers. The genetic data generated were used to evaluate the viability of the reintroduction and to propose measures for the management and conservation of this species. In this study, we found relatively high genetic diversity indices, indicating that the group was genetically diverse. Inbreeding coefficients with negative values were observed, indicating an excess of alleles in heterozygosis and an absence of inbreeding. One locus showed deviation from Hardy-Weinberg equilibrium, which may have been caused by the mixing of individuals from different origins. Relatedness analysis indicated that some individuals were highly related, with coefficients indicating they may be first-degree relatives. Our findings indicate that the studied group has enough genetic diversity to be released into nature, but the high individual relatedness found would require the adoption of strategies after the release of animals in the wild to ensure their persistence.
Collapse
Affiliation(s)
- Paula Teixeira Gomes
- Programa de Pós-Graduação em Ecologia de Biomas Tropicais, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Izinara Cruz Rosse
- Departamento de Farmácia, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
- Laboratório Multiusuário de Bioinformática da Universidade Federal de Ouro Preto (UFOP), Núcleo de Pesquisa em Ciências Biológicas (NUPEB), Ouro Preto, Minas Gerais, Brazil
| | - Lauro Ângelo Gonçalves Moraes
- Laboratório Multiusuário de Bioinformática da Universidade Federal de Ouro Preto (UFOP), Núcleo de Pesquisa em Ciências Biológicas (NUPEB), Ouro Preto, Minas Gerais, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Genética, Evolução e Ecologia, Laboratório de Biotecnologia e Marcadores Moleculares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Cristiano Schetini de Azevedo
- Programa de Pós-Graduação em Ecologia de Biomas Tropicais, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
- Departamento de Biodiversidade Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Danon Clemes Cardoso
- Programa de Pós-Graduação em Ecologia de Biomas Tropicais, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
- Departamento de Biodiversidade Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Maykon Passos Cristiano
- Programa de Pós-Graduação em Ecologia de Biomas Tropicais, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
- Departamento de Biodiversidade Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
3
|
Luttman AM, Komine M, Thaiwong T, Carpenter T, Ewart SL, Kiupel M, Langohr IM, Venta PJ. Development of a 17-Plex of Penta- and Tetra-Nucleotide Microsatellites for DNA Profiling and Paternity Testing in Horses. Front Vet Sci 2022; 9:861623. [PMID: 35464354 PMCID: PMC9021955 DOI: 10.3389/fvets.2022.861623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tetranucleotide and pentanucleotide short tandem repeat (hereafter termed tetraSTR and pentaSTR) polymorphisms have properties that make them desirable for DNA profiling and paternity testing. However, certain species, such as the horse, have far fewer tetraSTRs than other species and for this reason dinucleotide STRs (diSTRs) have become the standard for DNA profiling in horses, despite being less desirable for technical reasons. During our testing of a series of candidate genes as potentially underlying a heritable condition characterized by megaesophagus in the Friesian horse breed, we found that good tetraSTRs do exist in horses but, as expected, at a much lower frequency than in other species, e.g., dogs and humans. Using a series of efficient methods developed in our laboratory for the production of multiplexed tetraSTRs in other species, we identified a set of tetra- and pentaSTRs that we developed into a 17-plex panel for the horse, plus a sex-identifying marker near the amelogenin gene. These markers were tested in 128 horses representing 16 breeds as well as crossbred horses, and we found that these markers have useful genetic variability. Average observed heterozygosities (Ho) ranged from 0.53 to 0.89 for the individual markers (0.66 average Ho for all markers), and 0.62-0.82 for expected heterozygosity (He) within breeds (0.72 average He for all markers). The probability of identity (PI) within breeds for which 10 or more samples were available was at least 1.1 x 10−11, and the PI among siblings (PIsib) was 1.5 x 10−5. Stutter was ≤ 11% (average stutter for all markers combined was 6.9%) compared to the more than 30% typically seen with diSTRs. We predict that it will be possible to develop accurate allelic ladders for this multiplex panel that will make cross-laboratory comparisons easier and will also improve DNA profiling accuracy. Although we were only able to exclude candidate genes for Friesian horse megaesophagus with no unexcluded genes that are possibly causative at this point in time, the study helped us to refine the methods used to develop better tetraSTR multiplexed panels for species such as the horse that have a low frequency of tetraSTRs.
Collapse
Affiliation(s)
- Andrea M. Luttman
- Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Genetics and Genomic Sciences, Michigan State University, East Lansing, MI, United States
| | - Misa Komine
- Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Tuddow Thaiwong
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- *Correspondence: Tuddow Thaiwong
| | - Tyler Carpenter
- Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Susan L. Ewart
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Matti Kiupel
- Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Ingeborg M. Langohr
- Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Patrick J. Venta
- Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
Gwiazdowska A, Karpińska O, Kamionka-Kanclerska K, Rowiński P, Panagiotopoulou H, Pomorski JJ, Broughton RK, da Silva LFP, Rutkowski R. First microsatellite markers for the European Robin (Erithacus rubecula) and their application in analysis of parentage and genetic diversity. Sci Rep 2021; 11:18962. [PMID: 34556712 PMCID: PMC8460626 DOI: 10.1038/s41598-021-98364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
The European Robin is a small passerine bird associated with woodlands of Eurasia and North Africa. Despite being relatively widespread and common, little is known of the species’ breeding biology and genetic diversity. We used Next Generation Sequencing (NGS) to develop and characterize microsatellite markers for the European Robin, designing three multiplex panels to amplify 14 microsatellite loci. The level of polymorphism and its value for assessing parentage and genetic structure was estimated based on 119 individuals, including seven full families and 69 unrelated individuals form Poland’s Białowieża Primaeval Forest and an additional location in Portugal. All markers appeared to be highly variable. Analysis at the family level confirmed a Mendelian manner of inheritance in the investigated loci. Genetic data also revealed evidence for extra-pair paternity in one family. The set of markers that we developed are proven to be valuable for analysis of the breeding biology and population genetics of the European Robin.
Collapse
Affiliation(s)
- Aleksandra Gwiazdowska
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland
| | - Oliwia Karpińska
- Institute of Forest Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | | | - Patryk Rowiński
- Institute of Forest Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Hanna Panagiotopoulou
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland
| | - Jan J Pomorski
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland
| | - Richard K Broughton
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, UK
| | - Luis F P da Silva
- CBIO-InBIO Campus Agrário de Vairão Rua Padre Armando Quintas, nº7, 4485-661, Vila do Conde, Portugal
| | - Robert Rutkowski
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland.
| |
Collapse
|
5
|
Whole genome survey of big cats (Genus: Panthera) identifies novel microsatellites of utility in conservation genetic study. Sci Rep 2021; 11:14164. [PMID: 34238947 PMCID: PMC8266911 DOI: 10.1038/s41598-021-92781-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Big cats (Genus: Panthera) are among the most threatened mammal groups of the world, owing to hunting, habitat loss, and illegal transnational trade. Conservation genetic studies and effective curbs on poaching are important for the conservation of these charismatic apex predators. A limited number of microsatellite markers exists for Panthera species and researchers often cross-amplify domestic cat microsatellites to study these species. We conducted data mining of seven Panthera genome sequences to discover microsatellites for conservation genetic studies of four threatened big cat species. A total of 32 polymorphic microsatellite loci were identified in silico and tested with 152 big cats, and were found polymorphic in most of the tested species. We propose a set of 12 novel microsatellite markers for use in conservation genetics and wildlife forensic investigations of big cat species. Cumulatively, these markers have a high discriminatory power of one in a million for unrelated individuals and one in a thousand for siblings. Similar PCR conditions of these markers increase the prospects of achieving efficient multiplex PCR assays. This study is a pioneering attempt to synthesise genome wide microsatellite markers for big cats.
Collapse
|
6
|
Development of microsatellite loci and optimization of a multiplex assay for Latibulus argiolus (Hymenoptera: Ichneumonidae), the specialized parasitoid of paper wasps. Sci Rep 2020; 10:16068. [PMID: 32999353 PMCID: PMC7527953 DOI: 10.1038/s41598-020-72923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/09/2020] [Indexed: 11/09/2022] Open
Abstract
Microsatellite loci are commonly used markers in population genetic studies. In this study, we present 40 novel and polymorphic microsatellite loci elaborated for the ichneumonid parasitoid Latibulus argiolus (Rossi, 1790). Reaction condition optimisation procedures allowed 14 of these loci to be co-amplified in two PCRs and loaded in two multiplex panels onto a genetic analyser. The assay was tested on 197 individuals of L. argiolus originating from ten natural populations obtained from the host nests of paper wasps. The validated loci were polymorphic with high allele numbers ranging from eight to 27 (average 17.6 alleles per locus). Both observed and expected heterozygosity values were high, ranging between 0.75 and 0.92 for HO (mean 0.83) and from 0.70 to 0.90 for HE (mean 0.85). The optimized assay showed low genotyping error rate and negligible null allele frequency. The designed multiplex panels could be successfully applied in relatedness analyses and genetic variability studies of L. argiolus populations, which would be particularly interesting considering the coevolutionary context of this species with its social host.
Collapse
|