1
|
Rainey TA, Tryc EE, Nicholson KE. Comparing skin swabs, buccal swabs, and toe clips for amphibian genetic sampling, a case study with a small anuran ( Acris blanchardi). Biol Methods Protoc 2024; 9:bpae030. [PMID: 38818027 PMCID: PMC11139508 DOI: 10.1093/biomethods/bpae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Multiple methods for collecting genetic samples from amphibians exist, each with their own implications for study design, animal welfare, and costs. Toe clipping is one common method, but there is ongoing debate regarding its potential detriment. Less invasive methods should be implemented, if efficacious, as amphibians are a particularly vulnerable vertebrate group. Skin and buccal swabbing are less invasive methods for genetic sampling, but the potential for contamination and a lower yield of DNA may exist. To compare these methods, we gathered skin swabs, buccal swabs, and toe clips from the same individuals of a relatively small anuran species, Blanchard's Cricket Frog (Acris blanchardi). We then compared DNA yield, DNA purity, amplification success rate, and genotypic data quality among sample types. We found toe clips and buccal swabs generated similar DNA yield and purity, with skin swabs yielding significantly less DNA of significantly lower purity than the other sample types. Amplification success rate was significantly higher using toe clips compared to the other sample types, though buccal swab samples amplified more readily than skin swabs. Genotypic data from toe clips and buccal swabs did not differ significantly in quality, but skin swab data quality was significantly lowest among sample types. Thus, skin swabbing could produce erroneous data in some situations, but buccal swabbing is likely an effective substitute to toe clipping, even for small species. Our results can help future researchers select which genetic sampling method might best suit their research needs.
Collapse
Affiliation(s)
- Travis A Rainey
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, United States
| | - Emily E Tryc
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, United States
| | - Kirsten E Nicholson
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, United States
| |
Collapse
|
2
|
Morselli M, Bennett R, Shaidani NI, Horb M, Peshkin L, Pellegrini M. Age-associated DNA methylation changes in Xenopus frogs. Epigenetics 2023; 18:2201517. [PMID: 37092296 PMCID: PMC10128463 DOI: 10.1080/15592294.2023.2201517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Age-associated changes in DNA methylation have been characterized across various animals, but not yet in amphibians, which are of particular interest because they include widely studied model organisms. In this study, we present clear evidence that the aquatic vertebrate species Xenopus tropicalis displays patterns of age-associated changes in DNA methylation. We have generated whole-genome bisulfite sequencing (WGBS) profiles from skin samples of nine frogs representing young, mature, and old adults and characterized the gene- and chromosome-scale DNA methylation changes with age. Many of the methylation features and changes we observe are consistent with what is known in mammalian species, suggesting that the mechanism of age-related changes is conserved. Moreover, we selected a few thousand age-associated CpG sites to build an assay based on targeted DNA methylation analysis (TBSseq) to expand our findings in future studies involving larger cohorts of individuals. Preliminary results of a pilot TBSeq experiment recapitulate the findings obtained with WGBS setting the basis for the development of an epigenetic clock assay. The results of this study will allow us to leverage the unique resources available for Xenopus to study how DNA methylation relates to other hallmarks of ageing.
Collapse
Affiliation(s)
- Marco Morselli
- Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA, USA
| | - Ronan Bennett
- Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA, USA
| | - Nikko-Ideen Shaidani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Leonid Peshkin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
- Systems Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
3
|
Fu Y, Zhuang Y, Luo SJ, Xu X. An Enhanced Method for the Use of Reptile Skin Sheds as a High-Quality DNA Source for Genome Sequencing. Genes (Basel) 2023; 14:1678. [PMID: 37761818 PMCID: PMC10531129 DOI: 10.3390/genes14091678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
With the emergence of high-throughput sequencing technology, a number of non-avian reptile species have been sequenced at the genome scale, shedding light on various scientific inquiries related to reptile ecology and evolution. However, the routine requirement of tissue or blood samples for genome sequencing often poses challenges in many elusive reptiles, hence limiting the application of high-throughput sequencing technologies to reptile studies. An alternative reptilian DNA resource suitable for genome sequencing is in urgent need. Here, we used the corn snake (Pantherophis guttatus) as a reptile model species to demonstrate that the shed skin is a high-quality DNA source for genome sequencing. Skin sheds provide a noninvasive type of sample that can be easily collected without restraining or harming the animal. Our findings suggest that shed skin from corn snakes yields DNA of sufficient quantity and quality that are comparable to tissue DNA extracts. Genome sequencing data analysis revealed that shed skin DNA is subject to bacteria contamination at variable levels, which is a major issue related to shed skin DNA and may be addressed by a modified DNA extraction method through introduction of a 30 min pre-digestion step. This study provides an enhanced method for the use of reptile shed skins as a high-quality DNA source for whole genome sequencing. Utilizing shed skin DNA enables researchers to overcome the limitations generally associated with obtaining traditional tissue or blood samples and promises to facilitate the application of genome sequencing in reptilian research.
Collapse
Affiliation(s)
- Yeyizhou Fu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (Y.F.); (Y.Z.)
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua-NIBS (PTN) Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Zhuang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (Y.F.); (Y.Z.)
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (Y.F.); (Y.Z.)
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua-NIBS (PTN) Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiao Xu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (Y.F.); (Y.Z.)
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Xu Y, DU Z, Liu J, Su H, Ning F, Cui S, Wang L, Liu J, Ren C, DI S, Bai X. Male heterogametic sex determination in Rana dybowskii based on sex-linked molecular markers. Integr Zool 2021; 17:105-114. [PMID: 34254736 PMCID: PMC9290989 DOI: 10.1111/1749-4877.12577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying the mechanism for sex determination in amphibians is challenging. Very little is known about sex determination mechanisms of Rana dybowskii, a species of importance to evolutionary and conservation biology. We screened for sex‐linked molecular markers in R. dybowskii in China using target region amplification polymorphism with 2 fixed primers against the sequences of Dmrt1. We found 2 male‐linked molecular markers in R. dybowskii, which were 222 bp and 261 bp long. The detection rates of 222 bp marker in males form Xinglong, Huadian, and Dandong were 93.79%, 69.64%, and 13.64%, respectively, while the rate in females from Huadian was 27.50%. Besides, the detection rates of 261 bp marker in the above 3 regions were only observed in males at the rate of 93.79%, 87.50%, and 32.73%, respectively. The inheritance patterns of sex‐linked molecular markers showed that the 2 sex‐linked molecular markers were heterozygous. Compared to the XY‐male parent, progeny from XX‐pseudo‐male parent possessed lower sex reversal ratio at the same rearing temperature, and the proportion of female froglets from an XX‐pseudo‐male parent was more than 95% at low rearing temperature (15°C). Our findings suggest that R. dybowskii displays male heterogamety, and the 2 sex‐linked molecular markers may have a guiding significance for the protection and utilization of R. dybowskii.
Collapse
Affiliation(s)
- Yuan Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Zhiheng DU
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiayu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Hang Su
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fangyong Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shiquan Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lijuan Wang
- College of Agricultural, Eastern Liaoning University, Dandong, China
| | - Jianming Liu
- Yili Animal Science Research Institute, Yining, China
| | - Chuanshuai Ren
- Animal Husbandry Administration of Huadian, Huadian, China
| | - Shengwei DI
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiujuan Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
McGaughran A. Effects of sample age on data quality from targeted sequencing of museum specimens: what are we capturing in time? BMC Genomics 2020; 21:188. [PMID: 32111157 PMCID: PMC7048091 DOI: 10.1186/s12864-020-6594-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/19/2020] [Indexed: 01/04/2023] Open
Abstract
Background Next generation sequencing (NGS) can recover DNA data from valuable extant and extinct museum specimens. However, archived or preserved DNA is difficult to sequence because of its fragmented, damaged nature, such that the most successful NGS methods for preserved specimens remain sub-optimal. Improving wet-lab protocols and comprehensively determining the effects of sample age on NGS library quality are therefore of vital importance. Here, I examine the relationship between sample age and several indicators of library quality following targeted NGS sequencing of ~ 1300 loci using 271 samples of pinned moth specimens (Helicoverpa armigera) ranging in age from 5 to 117 years. Results I find that older samples have lower DNA concentrations following extraction and thus require a higher number of indexing PCR cycles during library preparation. When sequenced reads are aligned to a reference genome or to only the targeted region, older samples have a lower number of sequenced and mapped reads, lower mean coverage, and lower estimated library sizes, while the percentage of adapters in sequenced reads increases significantly as samples become older. Older samples also show the poorest capture success, with lower enrichment and a higher improved coverage anticipated from further sequencing. Conclusions Sample age has significant, measurable impacts on the quality of NGS data following targeted enrichment. However, incorporating a uracil-removing enzyme into the blunt end-repair step during library preparation could help to repair DNA damage, and using a method that prevents adapter-dimer formation may result in improved data yields.
Collapse
Affiliation(s)
- Angela McGaughran
- Australian National University, Research School of Biology, Division of Ecology and Evolution, Acton, Canberra, ACT, 2600, Australia. .,CSIRO Land and Water, Integrated Omics Team, Black Mountain Laboratories, Canberra, ACT, 2600, Australia.
| |
Collapse
|