1
|
Kayastha S, Sahoo JP, Mahapatra M, Sharma SS. Finger millet (Eleusine coracana) enhancement through genomic resources and breeding methods: current implications and potential future interventions. PLANTA 2024; 259:139. [PMID: 38687379 DOI: 10.1007/s00425-024-04415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Finger millet (Eleusine coracana) is an essential staple crop in many regions of Africa and Asia, valued for its nutritional content and resilience in challenging agro-ecological conditions. The enhancement of finger millet through genomic resources and breeding methods represents a promising avenue for addressing food and nutritional security. Current efforts in this field have harnessed genomic technologies to decipher the crop's genetic diversity and identify key traits related to yield, disease resistance, and nutritional content. These insights have facilitated the development of improved varieties through selective breeding, accelerating the crop's adaptation to changing environmental conditions. In the future, continued advancements in genomics and breeding methodologies hold the potential to further enhance finger millet's resilience, nutritional value, and productivity, ultimately benefiting both farmers and consumers. This review article synthesizes the current state of research and development in finger millet enhancement through the integration of genomic resources and innovative breeding methods. The utilization of these insights in selective breeding has already yielded promising results in developing improved finger millet varieties that meet the evolving needs of farmers and consumers. Moreover, this article discusses potential future interventions, including the continued advancement of genomics, precision breeding, and sustainable agricultural practices. These interventions hold the promise of further enhancing finger millet's adaptability to changing climates, its nutritional quality, and its overall productivity, thereby contributing to food security and improved livelihoods in finger millet-dependent regions.
Collapse
Affiliation(s)
- Salma Kayastha
- Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, 752054, India
| | - Jyoti Prakash Sahoo
- Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, 752054, India.
| | - Manaswini Mahapatra
- Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, 752054, India
| | - Siddhartha Shankar Sharma
- Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, 752054, India
| |
Collapse
|
2
|
Jayawardana SAS, Samarasekera JKRR, Hettiarachchi GHCM, Gooneratne MJ. Antidiabetic properties of finger millet (Eleusine coracana (L.) Gaertn.) varieties cultivated in Sri Lanka. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
3
|
Venkatesan J, Ramu V, Sethuraman T, Sivagnanam C, Doss G. Molecular marker for characterization of traditional and hybrid derivatives of Eleusine coracana (L.) using ISSR marker. J Genet Eng Biotechnol 2021; 19:178. [PMID: 34825986 PMCID: PMC8626548 DOI: 10.1186/s43141-021-00277-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/07/2021] [Indexed: 12/02/2022]
Abstract
BACKGROUND Finger millet is the most important food grain in the world for its nutritional benefits. Finger millet is genetically and geographically diverse and widely spread in the African and Asian sub-continent. Therefore, the present study was undertaken to analyze the genetic diversity using ISSR genetic markers using 15 ISSR primers. RESULTS About 23 genotypes of widely cultivated finger millet cultivars of economically important ones were characterized and the ISSR markers were critically analyzed for their performance with parameters such as polymorphic information content (PIC), effective multiplex ratio (EMR), marker index (MI), and resolving power (RP). In this study, 175 loci were scored across the 23 cultivars of finger millet, and out of these 173 loci (98%) were polymorphic, revealing the suitability of these loci for genetic diversity analysis with ISSR marker. The average number of polymorphic loci per primer was 11.50 with varying sizes from 100 bp to 2500 bp. ISSR primers that showed higher polymorphism were found to have higher EMR and MI values up to 15.30 and 13.44, respectively. CONCLUSION High degree of polymorphism supported with distinct differences of all the marker parameters revealed the suitability of ISSR markers for determining the genotypic differences based on ISSR markers among the 23 genotypes of finger millet. The possible application of the ISSR marker in the conservation and management of finger millet genetic resources is discussed.
Collapse
Affiliation(s)
- Jayalakshmi Venkatesan
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India.
| | - Vasuki Ramu
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Thilaga Sethuraman
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Chandrasekaran Sivagnanam
- Department of Plant Science, School of Biological Sciences, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Ganesh Doss
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
4
|
Rathinapriya P, Satish L, Rameshkumar R, Pandian S, Rency AS, Ramesh M. Role of activated charcoal and amino acids in developing an efficient regeneration system for foxtail millet ( Setaria italica (L.) Beauv.) using leaf base segments. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:533-548. [PMID: 30956434 PMCID: PMC6419705 DOI: 10.1007/s12298-018-0619-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/14/2018] [Accepted: 10/25/2018] [Indexed: 06/01/2023]
Abstract
An efficacious, reproducible direct in vitro regeneration system has been developed from leaf base segments (LBs) of six high yielding genotypes of foxtail millet (Setaria italica (L.) Beauv.). LBs excised from 4-day-old seedling were inoculated on Murashige and Skoog (MS) medium supplemented with different types and concentrations of cytokinins. The shoots induced per explant significantly increased with the supplementation of BAP to auxin containing medium. The results showed that a maximum shoot induction, 58.8% was obtained on MS medium incorporated with 8.9 µM BAP and 2.7 µM NAA in 'CO5' genotype. Further, the highest frequency of multiple shoots was produced on MS(I) medium containing 8.9 µM BAP, 2.7 µM NAA, 700 mg L-1 proline, 0.5 mg L-1 cysteine, 2.0 mg L-1 glycine and 150 mg L-1 arginine. MS(I) medium additionally fortified with 5.0 g L-1 activated charcoal (AC) was found to achieve the best precocious plant regeneration. Elongated shoots were rooted on half-strength MS medium amended with 2.9 µM IAA and achieved maximum root number (8.7) within 10 days. Rooted plantlets were acclimated in soil with 92% survival rate. Molecular marker analysis of in vitro regenerated and field grown plants revealed no somaclonal variations. Briefly, amino acids and activated charcoal could significantly enhance the foxtail millet direct multiple shoot proliferation and plant regeneration. Here we report, a short-term, genotype independent, direct plant regeneration protocol for future genetic transformation studies in foxtail millet genotypes.
Collapse
Affiliation(s)
- Periyasamy Rathinapriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu 630 003 India
| | - Lakkakula Satish
- Department of Biotechnology Engineering, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, 84105 Beer Sheva, Israel
| | - Ramakrishnan Rameshkumar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu 630 003 India
| | - Subramani Pandian
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu 630 003 India
| | - Arockiam Sagina Rency
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu 630 003 India
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu 630 003 India
| |
Collapse
|
5
|
Antony Ceasar S, Maharajan T, Ajeesh Krishna TP, Ramakrishnan M, Victor Roch G, Satish L, Ignacimuthu S. Finger Millet [ Eleusine coracana (L.) Gaertn.] Improvement: Current Status and Future Interventions of Whole Genome Sequence. FRONTIERS IN PLANT SCIENCE 2018; 9:1054. [PMID: 30083176 PMCID: PMC6064933 DOI: 10.3389/fpls.2018.01054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 05/05/2023]
Abstract
The whole genome sequence (WGS) of the much awaited, nutrient rich and climate resilient crop, finger millet (Eleusine coracana (L.) Gaertn.) has been released recently. While possessing superior mineral nutrients and excellent shelf life as compared to other major cereals, multiploidy nature of the genome and relatively small plantation acreage in less developed countries hampered the genome sequencing of finger millet, disposing it as one of the lastly sequenced genomes in cereals. The genomic information available for this crop is very little when compared to other major cereals like rice, maize and barley. As a result, only a limited number of genetic and genomic studies has been undertaken for the improvement of this crop. Finger millet is known especially for its superior calcium content, but the high-throughput studies are yet to be performed to understand the mechanisms behind calcium transport and grain filling. The WGS of finger millet is expected to help to understand this and other important molecular mechanisms in finger millet, which may be harnessed for the nutrient fortification of other cereals. In this review, we discuss various efforts made so far on the improvement of finger millet including genetic improvement, transcriptome analysis, mapping of quantitative trait loci (QTLs) for traits, etc. We also discuss the pitfalls of modern genetic studies and provide insights for accelerating the finger millet improvement with the interventions of WGS in near future. Advanced genetic and genomic studies aided by WGS may help to improve the finger millet, which will be helpful to strengthen the nutritional security in addition to food security in the developing countries of Asia and Africa.
Collapse
Affiliation(s)
- S. Antony Ceasar
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
- Functional Genomics and Plant Molecular Imaging Lab, University of Liege, Liege, Belgium
- *Correspondence: S. Antony Ceasar, Savarimuthu Ignacimuthu,
| | - T. Maharajan
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - T. P. Ajeesh Krishna
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - M. Ramakrishnan
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - G. Victor Roch
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - Lakkakula Satish
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Savarimuthu Ignacimuthu
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
- *Correspondence: S. Antony Ceasar, Savarimuthu Ignacimuthu,
| |
Collapse
|