1
|
Abedsaeidi M, Hojjati F, Tavassoli A, Sahebkar A. Biology of Tenascin C and its Role in Physiology and Pathology. Curr Med Chem 2024; 31:2706-2731. [PMID: 37021423 DOI: 10.2174/0929867330666230404124229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 04/07/2023]
Abstract
Tenascin-C (TNC) is a multimodular extracellular matrix (ECM) protein hexameric with several molecular forms (180-250 kDa) produced by alternative splicing at the pre-mRNA level and protein modifications. The molecular phylogeny indicates that the amino acid sequence of TNC is a well-conserved protein among vertebrates. TNC has binding partners, including fibronectin, collagen, fibrillin-2, periostin, proteoglycans, and pathogens. Various transcription factors and intracellular regulators tightly regulate TNC expression. TNC plays an essential role in cell proliferation and migration. Unlike embryonic tissues, TNC protein is distributed over a few tissues in adults. However, higher TNC expression is observed in inflammation, wound healing, cancer, and other pathological conditions. It is widely expressed in a variety of human malignancies and is recognized as a pivotal factor in cancer progression and metastasis. Moreover, TNC increases both pro-and anti-inflammatory signaling pathways. It has been identified as an essential factor in tissue injuries such as damaged skeletal muscle, heart disease, and kidney fibrosis. This multimodular hexameric glycoprotein modulates both innate and adaptive immune responses regulating the expression of numerous cytokines. Moreover, TNC is an important regulatory molecule that affects the onset and progression of neuronal disorders through many signaling pathways. We provide a comprehensive overview of the structural and expression properties of TNC and its potential functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Malihehsadat Abedsaeidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzaneh Hojjati
- Division of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Okada T, Suzuki H. The Role of Tenascin-C in Tissue Injury and Repair After Stroke. Front Immunol 2021; 11:607587. [PMID: 33552066 PMCID: PMC7859104 DOI: 10.3389/fimmu.2020.607587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Stroke is still one of the most common causes for mortality and morbidity worldwide. Following acute stroke onset, biochemical and cellular changes induce further brain injury such as neuroinflammation, cell death, and blood-brain barrier disruption. Matricellular proteins are non-structural proteins induced by many stimuli and tissue damage including stroke induction, while its levels are generally low in a normal physiological condition in adult tissues. Currently, a matricellular protein tenascin-C (TNC) is considered to be an important inducer to promote neuroinflammatory cascades and the resultant pathology in stroke. TNC is upregulated in cerebral arteries and brain tissues including astrocytes, neurons, and brain capillary endothelial cells following subarachnoid hemorrhage (SAH). TNC may be involved in blood-brain barrier disruption, neuronal apoptosis, and cerebral vasospasm via the activation of mitogen-activated protein kinases and nuclear factor-kappa B following SAH. In addition, post-SAH TNC levels in cerebrospinal fluid predicted the development of delayed cerebral ischemia and angiographic vasospasm in clinical settings. On the other hand, TNC is reported to promote fibrosis and exert repair effects for an experimental aneurysm via macrophages-induced migration and proliferation of smooth muscle cells. The authors review TNC-induced inflammatory signal cascades and the relationships with other matricellular proteins in stroke-related pathology.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Neurosurgery, Kuwana City Medical Center, Kuwana, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
3
|
Matsumoto KI, Aoki H. The Roles of Tenascins in Cardiovascular, Inflammatory, and Heritable Connective Tissue Diseases. Front Immunol 2020; 11:609752. [PMID: 33335533 PMCID: PMC7736112 DOI: 10.3389/fimmu.2020.609752] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Tenascins are a family of multifunctional extracellular matrix (ECM) glycoproteins with time- and tissue specific expression patterns during development, tissue homeostasis, and diseases. There are four family members (tenascin-C, -R, -X, -W) in vertebrates. Among them, tenascin-X (TNX) and tenascin-C (TNC) play important roles in human pathologies. TNX is expressed widely in loose connective tissues. TNX contributes to the stability and maintenance of the collagen network, and its absence causes classical-like Ehlers-Danlos syndrome (clEDS), a heritable connective tissue disorder. In contrast, TNC is specifically and transiently expressed upon pathological conditions such as inflammation, fibrosis, and cancer. There is growing evidence that TNC is involved in inflammatory processes with proinflammatory or anti-inflammatory activity in a context-dependent manner. In this review, we summarize the roles of these two tenascins, TNX and TNC, in cardiovascular and inflammatory diseases and in clEDS, and we discuss the functional consequences of the expression of these tenascins for tissue homeostasis.
Collapse
Affiliation(s)
- Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
| |
Collapse
|
4
|
Strobel HA, Qendro EI, Alsberg E, Rolle MW. Targeted Delivery of Bioactive Molecules for Vascular Intervention and Tissue Engineering. Front Pharmacol 2018; 9:1329. [PMID: 30519186 PMCID: PMC6259603 DOI: 10.3389/fphar.2018.01329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/29/2018] [Indexed: 01/25/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death in the United States. Treatment often requires surgical interventions to re-open occluded vessels, bypass severe occlusions, or stabilize aneurysms. Despite the short-term success of such interventions, many ultimately fail due to thrombosis or restenosis (following stent placement), or incomplete healing (such as after aneurysm coil placement). Bioactive molecules capable of modulating host tissue responses and preventing these complications have been identified, but systemic delivery is often harmful or ineffective. This review discusses the use of localized bioactive molecule delivery methods to enhance the long-term success of vascular interventions, such as drug-eluting stents and aneurysm coils, as well as nanoparticles for targeted molecule delivery. Vascular grafts in particular have poor patency in small diameter, high flow applications, such as coronary artery bypass grafting (CABG). Grafts fabricated from a variety of approaches may benefit from bioactive molecule incorporation to improve patency. Tissue engineering is an especially promising approach for vascular graft fabrication that may be conducive to incorporation of drugs or growth factors. Overall, localized and targeted delivery of bioactive molecules has shown promise for improving the outcomes of vascular interventions, with technologies such as drug-eluting stents showing excellent clinical success. However, many targeted vascular drug delivery systems have yet to reach the clinic. There is still a need to better optimize bioactive molecule release kinetics and identify synergistic biomolecule combinations before the clinical impact of these technologies can be realized.
Collapse
Affiliation(s)
- Hannah A. Strobel
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Elisabet I. Qendro
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA, United States
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Marsha W. Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
5
|
Nakatsuka Y, Kawakita F, Yasuda R, Umeda Y, Toma N, Sakaida H, Suzuki H. Preventive effects of cilostazol against the development of shunt-dependent hydrocephalus after subarachnoid hemorrhage. J Neurosurg 2016; 127:319-326. [PMID: 27494819 DOI: 10.3171/2016.5.jns152907] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Chronic hydrocephalus develops in association with the induction of tenascin-C (TNC), a matricellular protein, after aneurysmal subarachnoid hemorrhage (SAH). The aim of this study was to examine if cilostazol, a selective inhibitor of phosphodiesterase Type III, suppresses the development of chronic hydrocephalus by inhibiting TNC induction in aneurysmal SAH patients. METHODS The authors retrospectively reviewed the factors influencing the development of chronic shunt-dependent hydrocephalus in 87 patients with Fisher Grade 3 SAH using multivariate logistic regression analyses. Cilostazol (50 or 100 mg administered 2 or 3 times per day) was administered from the day following aneurysmal obliteration according to the preference of the attending neurosurgeon. As a separate study, the effects of different dosages of cilostazol on the serum TNC levels were chronologically examined from Days 1 to 12 in 38 SAH patients with Fisher Grade 3 SAH. RESULTS Chronic hydrocephalus occurred in 12 of 36 (33.3%), 5 of 39 (12.8%), and 1 of 12 (8.3%) patients in the 0 mg/day, 100 to 200 mg/day, and 300 mg/day cilostazol groups, respectively. The multivariate analyses showed that older age (OR 1.10, 95% CI 1.13-1.24; p = 0.012), acute hydrocephalus (OR 23.28, 95% CI 1.75-729.83; p = 0.016), and cilostazol (OR 0.23, 95% CI 0.05-0.93; p = 0.038) independently affected the development of chronic hydrocephalus. Higher dosages of cilostazol more effectively suppressed the serum TNC levels through Days 1 to 12 post-SAH. CONCLUSIONS Cilostazol may prevent the development of chronic hydrocephalus and reduce shunt surgery, possibly by the inhibition of TNC induction after SAH.
Collapse
Affiliation(s)
| | | | | | - Yasuyuki Umeda
- Center for Vessels and Heart, Mie University Hospital, Tsu, Japan
| | | | - Hiroshi Sakaida
- Innovative Neuro-Intervention Radiology, Mie University Graduate School of Medicine; and
| | | | | |
Collapse
|
6
|
Suzuki H, Kawakita F. Tenascin-C in aneurysmal subarachnoid hemorrhage: deleterious or protective? Neural Regen Res 2016; 11:230-1. [PMID: 27073368 PMCID: PMC4810979 DOI: 10.4103/1673-5374.177721] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
7
|
Miura Y, Tanemura H, Fujimoto M, Hamada K, Miyamoto K, Toma N, Imanaka-Yoshida K, Matsushima S, Yoshida T, Taki W, Suzuki H. Aneurysm Organization Effects of Gellan Sulfate Core Platinum Coil with Tenascin-C in a Simulated Clinical Setting and the Possible Mechanism. J Stroke Cerebrovasc Dis 2016; 25:771-80. [DOI: 10.1016/j.jstrokecerebrovasdis.2015.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/11/2015] [Accepted: 12/10/2015] [Indexed: 12/01/2022] Open
|
8
|
Fujimoto M, Shiba M, Kawakita F, Liu L, Shimojo N, Imanaka-Yoshida K, Yoshida T, Suzuki H. Deficiency of tenascin-C and attenuation of blood-brain barrier disruption following experimental subarachnoid hemorrhage in mice. J Neurosurg 2015; 124:1693-702. [PMID: 26473781 DOI: 10.3171/2015.4.jns15484] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECT Tenascin-C (TNC), a matricellular protein, is induced in the brain following subarachnoid hemorrhage (SAH). The authors investigated if TNC causes brain edema and blood-brain barrier (BBB) disruption following experimental SAH. METHODS C57BL/6 wild-type (WT) or TNC knockout (TNKO) mice were subjected to SAH by endovascular puncture. Ninety-seven mice were randomly allocated to WT sham-operated (n = 16), TNKO sham-operated (n = 16), WT SAH (n = 34), and TNKO SAH (n = 31) groups. Mice were examined by means of neuroscore and brain water content 24-48 hours post-SAH; and Evans blue dye extravasation and Western blotting of TNC, matrix metalloproteinase (MMP)-9, and zona occludens (ZO)-1 at 24 hours post-SAH. As a separate study, 16 mice were randomized to WT sham-operated, TNKO sham-operated, WT SAH, and TNKO SAH groups (n = 4 in each group), and activation of mitogen-activated protein kinases (MAPKs) was immunohistochemically evaluated at 24 hours post-SAH. Moreover, 40 TNKO mice randomly received an intracerebroventricular injection of TNC or phosphate-buffered saline, and effects of exogenous TNC on brain edema and BBB disruption following SAH were studied. RESULTS Deficiency of endogenous TNC prevented neurological impairments, brain edema formation, and BBB disruption following SAH; it was also associated with the inhibition of both MMP-9 induction and ZO-1 degradation. Endogenous TNC deficiency also inhibited post-SAH MAPK activation in brain capillary endothelial cells. Exogenous TNC treatment abolished the neuroprotective effects shown in TNKO mice with SAH. CONCLUSIONS Tenascin-C may be an important mediator in the development of brain edema and BBB disruption following SAH, mechanisms for which may involve MAPK-mediated MMP-9 induction and ZO-1 degradation. TNC could be a molecular target against which to develop new therapies for SAH-induced brain injuries.
Collapse
Affiliation(s)
| | | | | | - Lei Liu
- Departments of 1 Neurosurgery and
| | - Naoshi Shimojo
- Pathology and Matrix Biology.,Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kyoko Imanaka-Yoshida
- Pathology and Matrix Biology.,Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Toshimichi Yoshida
- Pathology and Matrix Biology.,Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Departments of 1 Neurosurgery and.,Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
9
|
Suzuki H. What is early brain injury? Transl Stroke Res 2014; 6:1-3. [PMID: 25502277 DOI: 10.1007/s12975-014-0380-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, 514-8507, Mie, Japan,
| |
Collapse
|