1
|
Moxon JV, Pretorius C, Trollope AF, Mittal P, Klingler-Hoffmann M, Hoffmann P, Golledge J. A systematic review and in silico analysis of studies investigating the ischemic penumbra proteome in animal models of experimental stroke. J Cereb Blood Flow Metab 2024; 44:1709-1722. [PMID: 38639008 PMCID: PMC11504113 DOI: 10.1177/0271678x241248502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Ischaemic stroke results in the formation of a cerebral infarction bordered by an ischaemic penumbra. Characterising the proteins within the ischaemic penumbra may identify neuro-protective targets and novel circulating markers to improve patient care. This review assessed data from studies using proteomic platforms to compare ischaemic penumbra tissues to controls following experimental stroke in animal models. Proteins reported to differ significantly between penumbra and control tissues were analysed in silico to identify protein-protein interactions and over-represented pathways. Sixteen studies using rat (n = 12), mouse (n = 2) or primate (n = 2) models were included. Heterogeneity in the design of the studies and definition of the penumbra were observed. Analyses showed high abundance of p53 in the penumbra within 24 hours of permanent ischaemic stroke and was implicated in driving apoptosis, cell cycle progression, and ATM- MAPK- and p53- signalling. Between 1 and 7 days after stroke there were changes in the abundance of proteins involved in the complement and coagulation pathways. Favourable recovery 1 month after stroke was associated with an increase in the abundance of proteins involved in wound healing. Poor recovery was associated with increases in prostaglandin signalling. Findings suggest that p53 may be a target for novel therapeutics for ischaemic stroke.
Collapse
Affiliation(s)
- Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Cornea Pretorius
- Townsville University Hospital, Angus Smith Drive, Douglas, Townsville, Australia
| | - Alexandra F Trollope
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Parul Mittal
- Mass Spectrometry and Proteomics Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Manuela Klingler-Hoffmann
- Mass Spectrometry and Proteomics Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Peter Hoffmann
- Mass Spectrometry and Proteomics Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Australia
| |
Collapse
|
2
|
Beker MC, Aydinli FI, Caglayan AB, Beker M, Baygul O, Caglayan A, Popa-Wagner A, Doeppner TR, Hermann DM, Kilic E. Age-Associated Resilience Against Ischemic Injury in Mice Exposed to Transient Middle Cerebral Artery Occlusion. Mol Neurobiol 2023:10.1007/s12035-023-03353-4. [PMID: 37093494 DOI: 10.1007/s12035-023-03353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Ischemic stroke is the leading cause of death and disability. Although stroke mainly affects aged individuals, animal research is mostly one on young rodents. Here, we examined the development of ischemic injury in young (9-12-week-old) and adult (72-week-old) C57BL/6 and BALB/c mice exposed to 30 min of intraluminal middle cerebral artery occlusion (MCAo). Post-ischemic reperfusion did not differ between young and adult mice. Ischemic injury assessed by infarct area and blood-brain barrier (BBB) integrity assessed by IgG extravasation analysis was smaller in adult compared with young mice. Microvascular viability and neuronal survival assessed by CD31 and NeuN immunohistochemistry were higher in adult than young mice. Tissue protection was associated with stronger activation of cell survival pathways in adult than young mice. Microglial/macrophage accumulation and activation assessed by F4/80 immunohistochemistry were more restricted in adult than young mice, and pro- and anti-inflammatory cytokine and chemokine responses were reduced by aging. By means of liquid chromatography-mass spectrometry, we identified a hitherto unknown proteome profile comprising the upregulation of glycogen degradation-related pathways and the downregulation of mitochondrial dysfunction-related pathways, which distinguished post-ischemic responses of the aged compared with the young brain. Our study suggests that aging increases the brain's resilience against ischemic injury.
Collapse
Affiliation(s)
- Mustafa C Beker
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Fatmagul I Aydinli
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Medical Biology, School of Medicine, Nisantasi University, Istanbul, Turkey
| | - Ahmet B Caglayan
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Merve Beker
- Department of Medical Biology, International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Oguzhan Baygul
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aysun Caglayan
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging, ARES, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Unalan, TR-34700, Istanbul, Turkey.
| |
Collapse
|
4
|
Das T, Kamle A, Kumar A, Chakravarty S. Hypoxia Induced Sex-Difference in Zebrafish Brain Proteome Profile Reveals the Crucial Role of H3K9me3 in Recovery From Acute Hypoxia. Front Genet 2022; 12:635904. [PMID: 35173759 PMCID: PMC8841817 DOI: 10.3389/fgene.2021.635904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the molecular basis of sex differences in neural response to acute hypoxic insult has profound implications for the effective prevention and treatment of ischemic stroke. Global hypoxic-ischemic induced neural damage has been studied recently under well-controlled, non-invasive, reproducible conditions using a zebrafish model. Our earlier report on sex difference in global acute hypoxia-induced neural damage and recovery in zebrafish prompted us to conduct a comprehensive study on the mechanisms underlying the recovery. An omics approach for studying quantitative changes in brain proteome upon hypoxia insult following recovery was undertaken using iTRAQ-based LC-MS/MS approach. The results shed light on the altered expression of many regulatory proteins in the zebrafish brain upon acute hypoxia following recovery. The sex difference in differentially expressed proteins along with the proteins expressed in a uniform direction in both the sexes was studied. Core expression analysis by Ingenuity Pathway Analysis (IPA) showed a distinct sex difference in the disease function heatmap. Most of the upstream regulators obtained through IPA were validated at the transcriptional level. Translational upregulation of H3K9me3 in males led us to elucidate the mechanism of recovery by confirming transcriptional targets through ChIP-qPCR. The upregulation of H3K9me3 level in males at 4 h post-hypoxia appears to affect the early neurogenic markers nestin, klf4, and sox2, which might explain the late recovery in males, compared to females. Acute hypoxia-induced sex-specific comparison of brain proteome led us to reveal many differentially expressed proteins, which can be further studied for the development of novel targets for better therapeutic strategy.
Collapse
Affiliation(s)
- Tapatee Das
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Avijeet Kamle
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Arvind Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sumana Chakravarty
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- *Correspondence: Sumana Chakravarty,
| |
Collapse
|
5
|
Babu M, Singh N, Datta A. In Vitro Oxygen Glucose Deprivation Model of Ischemic Stroke: A Proteomics-Driven Systems Biological Perspective. Mol Neurobiol 2022; 59:2363-2377. [PMID: 35080759 DOI: 10.1007/s12035-022-02745-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/11/2022] [Indexed: 01/17/2023]
Abstract
Oxygen glucose deprivation (OGD) of brain cells is the commonest in vitro model of ischemic stroke that is used extensively for basic and preclinical stroke research. Protein mass spectrometry is one of the most promising and rapidly evolving technologies in biomedical research. A systems-level understanding of cell-type-specific responses to oxygen and glucose deprivation without systemic influence is a prerequisite to delineate the response of the neurovascular unit following ischemic stroke. In this systematic review, we summarize the proteomics studies done on different OGD models. These studies have followed an expression or interaction proteomics approach. They have been primarily used to understand the cellular pathophysiology of ischemia-reperfusion injury or to assess the efficacy of interventions as potential treatment options. We compile the limitations of OGD model and downstream proteomics experiment. We further show that despite having limitations, several proteins shortlisted as altered in in vitro OGD-proteomics studies showed comparable regulation in ischemic stroke patients. This showcases the translational potential of this approach for therapeutic target and biomarker discovery. We next discuss the approaches that can be adopted for cell-type-specific validation of OGD-proteomics results in the future. Finally, we briefly present the research questions that can be addressed by OGD-proteomics studies using emerging techniques of protein mass spectrometry. We have also created a web resource compiling information from OGD-proteomics studies to facilitate data sharing for community usage. This review intends to encourage preclinical stroke community to adopt a hypothesis-free proteomics approach to understand cell-type-specific responses following ischemic stroke.
Collapse
Affiliation(s)
- Manju Babu
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Nikhil Singh
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Arnab Datta
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
6
|
Chen Y, Song F, Tu M, Wu S, He X, Liu H, Xu C, Zhang K, Zhu Y, Zhou R, Jin C, Wang P, Zhang H, Tian M. Quantitative proteomics revealed extensive microenvironmental changes after stem cell transplantation in ischemic stroke. Front Med 2021; 16:429-441. [PMID: 34241786 DOI: 10.1007/s11684-021-0842-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022]
Abstract
The local microenvironment is essential to stem cell-based therapy for ischemic stroke, and spatiotemporal changes of the microenvironment in the pathological process provide vital clues for understanding the therapeutic mechanisms. However, relevant studies on microenvironmental changes were mainly confined in the acute phase of stroke, and long-term changes remain unclear. This study aimed to investigate the microenvironmental changes in the subacute and chronic phases of ischemic stroke after stem cell transplantation. Herein, induced pluripotent stem cells (iPSCs) and neural stem cells (NSCs) were transplanted into the ischemic brain established by middle cerebral artery occlusion surgery. Positron emission tomography imaging and neurological tests were applied to evaluate the metabolic and neurofunctional alterations of rats transplanted with stem cells. Quantitative proteomics was employed to investigate the protein expression profiles in iPSCs-transplanted brain in the subacute and chronic phases of stroke. Compared with NSCs-transplanted rats, significantly increased glucose metabolism and neurofunctional scores were observed in iPSCs-transplanted rats. Subsequent proteomic data of iPSCs-transplanted rats identified a total of 39 differentially expressed proteins in the subacute and chronic phases, which are involved in various ischemic stroke-related biological processes, including neuronal survival, axonal remodeling, antioxidative stress, and mitochondrial function restoration. Taken together, our study indicated that iPSCs have a positive therapeutic effect in ischemic stroke and emphasized the wide-ranging microenvironmental changes in the subacute and chronic phases.
Collapse
Affiliation(s)
- Yao Chen
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.,Department of Radiology, Zhejiang Hospital, Hangzhou, 310030, China
| | - Fahuan Song
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Mengjiao Tu
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.,Department of PET Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shuang Wu
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Xiao He
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Hao Liu
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Caiyun Xu
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Kai Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Yuankai Zhu
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Rui Zhou
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Ping Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China.,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China. .,Shanxi Medical University, Taiyuan, 030001, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China. .,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China.
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
| |
Collapse
|