1
|
Santos E, Lopez-Navarro JM, Suarez-Gutierrez MA, Holzwarth N, Albiña-Palmarola P, Kirchner T, Hernandez-Aguilera A, Fernandez-Amador JA, Vazifehdan F, Woitzik J, Maier-Hein L, Sanchez-Porras R. Depth-Specific Hypoxic Responses to Spreading Depolarizations in Gyrencephalic Swine Cortex Unveiled by Photoacoustic Imaging. Transl Stroke Res 2025; 16:672-678. [PMID: 38622426 DOI: 10.1007/s12975-024-01247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Spreading depolarizations (SDs) are a marker of brain injury and have a causative effect on ischemic lesion progression. The hemodynamic responses elicited by SDs are contingent upon the metabolic integrity of the affected tissue, with vasoconstrictive reactions leading to pronounced hypoxia often indicating poor outcomes. The stratification of hemodynamic responses within different cortical layers remains poorly characterized. This pilot study sought to elucidate the depth-specific hemodynamic changes in response to SDs within the gray matter of the gyrencephalic swine brain. Employing a potassium chloride-induced SD model, we utilized multispectral photoacoustic imaging (PAI) to estimate regional cerebral oxygen saturation (rcSO2%) changes consequent to potassium chloride-induced SDs. Regions of interest were demarcated at three cortical depths covering up to 4 mm. Electrocorticography (ECoG) strips were placed to validate the presence of SDs. Through PAI, we detected 12 distinct rcSO2% responses, which corresponded with SDs detected in ECoG. Notably, a higher frequency of hypoxic responses was observed in the deeper cortical layers compared to superficial layers, where hyperoxic and mixed responses predominated (p < 0.001). This data provides novel insights into the differential oxygenation patterns across cortical layers in response to SDs, underlining the complexity of cerebral hemodynamics post-injury.
Collapse
Affiliation(s)
- Edgar Santos
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, Carl Von Ossietzky University of Oldenburg, Marienstraße 11, 26121, Oldenburg, Germany
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Spine Center Stuttgart, Paulinenhilfe, Diakonie-Klinikum Stuttgart, Stuttgart, Germany
| | - Juan M Lopez-Navarro
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, Carl Von Ossietzky University of Oldenburg, Marienstraße 11, 26121, Oldenburg, Germany
| | - Marcos Alejandro Suarez-Gutierrez
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, Carl Von Ossietzky University of Oldenburg, Marienstraße 11, 26121, Oldenburg, Germany
| | - Niklas Holzwarth
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pablo Albiña-Palmarola
- Neuroradiologische Klinik, Klinikum Stuttgart, Stuttgart, Germany
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- Department of Anatomy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas Kirchner
- Institut Für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Adrian Hernandez-Aguilera
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | - Farzam Vazifehdan
- Spine Center Stuttgart, Paulinenhilfe, Diakonie-Klinikum Stuttgart, Stuttgart, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, Carl Von Ossietzky University of Oldenburg, Marienstraße 11, 26121, Oldenburg, Germany
| | - Lena Maier-Hein
- Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renan Sanchez-Porras
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, Carl Von Ossietzky University of Oldenburg, Marienstraße 11, 26121, Oldenburg, Germany.
| |
Collapse
|
2
|
Carlson AP, Jones T, Zhu Y, Desai M, Alsarah A, Shuttleworth CW. Oxygen-Based Autoregulation Indices Associated with Clinical Outcomes and Spreading Depolarization in Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2025; 42:521-531. [PMID: 39192101 PMCID: PMC11950063 DOI: 10.1007/s12028-024-02088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Impairment in cerebral autoregulation has been proposed as a potentially targetable factor in patients with aneurysmal subarachnoid hemorrhage (aSAH); however, there are different continuous measures that can be used to calculate the state of autoregulation. In addition, it has previously been proposed that there may be an association of impaired autoregulation with the occurrence of spreading depolarization (SD) events. METHODS Study participants with invasive multimodal monitoring and aSAH were enrolled in an observational study. Autoregulation indices were prospectively calculated from this database as a 10 s moving correlation coefficient between various cerebral blood flow (CBF) surrogates and mean arterial pressure (MAP). In study participants with subdural electrocorticography (ECoG) monitoring, SD was also scored. Associations between clinical outcomes using the modified Rankin scale and occurrence of either isolated or clustered SD were assessed. RESULTS A total of 320 study participants were included, 47 of whom also had ECoG SD monitoring. As expected, baseline severity factors, such as modified Fisher scale score and World Federation of Neurosurgical Societies scale grade, were strongly associated with the clinical outcome. SD probability was related to blood pressure in a triphasic pattern, with a linear increase in probability below MAP of ~ 100 mm Hg. Multiple autoregulation indices were available for review based on moving correlations between mean arterial pressure (MAP) and various surrogates of cerebral blood flow (CBF). We calculated the pressure reactivity (PRx) using two different sources for intracranial pressure (ICP). We calculated the oxygen reactivity (ORx) using the partial pressure of brain tissue oxygen (PbtO2) from the Licox probe. We calculated the cerebral blood flow reactivity (CBFRx) using perfusion measurements from the Bowman perfusion probe. Finally, we calculated the cerebral oxygen saturation reactivity (OSRx) using regional cerebral oxygen saturation measured by near-infrared spectroscopy from the INVOS sensors. Only worse ORx and OSRx were associated with worse clinical outcomes. Both ORx and OSRx also were found to increase in the hour prior to SD for both sporadic and clustered SD. CONCLUSIONS Impairment in autoregulation in aSAH is associated with worse clinical outcomes and occurrence of SD when using ORx and OSRx. Impaired autoregulation precedes SD occurrence. Targeting the optimal MAP or cerebral perfusion pressure in patients with aSAH should use ORx and/or OSRx as the input function rather than intracranial pressure.
Collapse
Affiliation(s)
- Andrew P Carlson
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Yiliang Zhu
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Masoom Desai
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Ali Alsarah
- Department of Neurology, Harvard University, Boston, MA, USA
| | - C William Shuttleworth
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
3
|
Carlson AP, Mayer AR, Cole C, van der Horn HJ, Marquez J, Stevenson TC, Shuttleworth CW. Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia. Rev Neurosci 2024; 35:651-678. [PMID: 38581271 PMCID: PMC11297425 DOI: 10.1515/revneuro-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Cerebral autoregulation is an intrinsic myogenic response of cerebral vasculature that allows for preservation of stable cerebral blood flow levels in response to changing systemic blood pressure. It is effective across a broad range of blood pressure levels through precapillary vasoconstriction and dilation. Autoregulation is difficult to directly measure and methods to indirectly ascertain cerebral autoregulation status inherently require certain assumptions. Patients with impaired cerebral autoregulation may be at risk of brain ischemia. One of the central mechanisms of ischemia in patients with metabolically compromised states is likely the triggering of spreading depolarization (SD) events and ultimately, terminal (or anoxic) depolarization. Cerebral autoregulation and SD are therefore linked when considering the risk of ischemia. In this scoping review, we will discuss the range of methods to measure cerebral autoregulation, their theoretical strengths and weaknesses, and the available clinical evidence to support their utility. We will then discuss the emerging link between impaired cerebral autoregulation and the occurrence of SD events. Such an approach offers the opportunity to better understand an individual patient's physiology and provide targeted treatments.
Collapse
Affiliation(s)
- Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Andrew R. Mayer
- Mind Research Network, 1101 Yale, Blvd, NE, Albuquerque, NM, 87106, USA
| | - Chad Cole
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | | | - Joshua Marquez
- University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Taylor C. Stevenson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| |
Collapse
|
4
|
Carlson AP, Jones T, Zhu Y, Desai M, Alsarah A, Shuttleworth CW. Oxygen-based autoregulation indices associated with clinical outcomes and spreading depolarization in aSAH. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307563. [PMID: 38798620 PMCID: PMC11118627 DOI: 10.1101/2024.05.17.24307563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Impairment in cerebral autoregulation has been proposed as a potentially targetable factor in patients with aneurysmal subarachnoid hemorrhage (aSAH), however there are different continuous measures that can be used to calculate the state of autoregulation. In addition, it has previously been proposed that there may be an association of impaired autoregulation with the occurrence of spreading depolarization (SD) events. Methods Subjects with invasive multimodal monitoring and aSAH were enrolled in an observational study. Autoregulation indices were prospectively calculated from this database as a 10 second moving correlation coefficient between various cerebral blood flow (CBF) surrogates and mean arterial pressure (MAP). In subjects with subdural ECoG (electrocorticography) monitoring, SD was also scored. Associations between clinical outcomes using the mRS (modified Rankin Scale) and occurrence of either isolated or clustered SD was assessed. Results 320 subjects were included, 47 of whom also had ECoG SD monitoring. As expected, baseline severity factors such as mFS and WFNS (World Federation of Neurosurgical Societies scale) were strongly associated with the clinical outcome. SD probability was related to blood pressure in a triphasic pattern with a linear increase in probability below MAP of ∼100mmHg.Autoregulation indices were available for intracranial pressure (ICP) measurements (PRx), PbtO2 from Licox (ORx), perfusion from the Bowman perfusion probe (CBFRx), and cerebral oxygen saturation measured by near infrared spectroscopy (OSRx). Only worse ORx and OSRx were associated with worse clinical outcomes. ORx and OSRx also were found to both increase in the hour prior to SD for both sporadic and clustered SD. Conclusions Impairment in autoregulation in aSAH is associated with worse clinical outcomes and occurrence of SD when using ORx and OSRx. Impaired autoregulation precedes SD occurrence. Targeting the optimal MAP or cerebral perfusion pressure in patients with aSAH should use ORx and/or OSRx as the input function rather than intracranial pressure.
Collapse
|
5
|
Lazaridis C, Foreman B. Management Strategies Based on Multi-Modality Neuromonitoring in Severe Traumatic Brain Injury. Neurotherapeutics 2023; 20:1457-1471. [PMID: 37491682 PMCID: PMC10684466 DOI: 10.1007/s13311-023-01411-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Secondary brain injury after neurotrauma is comprised of a host of distinct, potentially concurrent and interacting mechanisms that may exacerbate primary brain insult. Multimodality neuromonitoring is a method of measuring multiple aspects of the brain in order to understand the signatures of these different pathomechanisms and to detect, treat, or prevent potentially reversible secondary brain injuries. The most studied invasive parameters include intracranial pressure (ICP), cerebral perfusion pressure (CPP), autoregulatory indices, brain tissue partial oxygen tension, and tissue energy and metabolism measures such as the lactate pyruvate ratio. Understanding the local metabolic state of brain tissue in order to infer pathology and develop appropriate management strategies is an area of active investigation. Several clinical trials are underway to define the role of brain tissue oxygenation monitoring and electrocorticography in conjunction with other multimodal neuromonitoring information, including ICP and CPP monitoring. Identifying an optimal CPP to guide individualized management of blood pressure and ICP has been shown to be feasible, but definitive clinical trial evidence is still needed. Future work is still needed to define and clinically correlate patterns that emerge from integrated measurements of metabolism, pressure, flow, oxygenation, and electrophysiology. Pathophysiologic targets and precise critical care management strategies to address their underlying causes promise to mitigate secondary injuries and hold the potential to improve patient outcome. Advancements in clinical trial design are poised to establish new standards for the use of multimodality neuromonitoring to guide individualized clinical care.
Collapse
Affiliation(s)
- Christos Lazaridis
- Division of Neurocritical Care, Departments of Neurology and Neurosurgery, University of Chicago Medical Center, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA.
| | - Brandon Foreman
- Division of Neurocritical Care, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
6
|
Ross MM, Aizenman E. GluA1-Shank3 interaction decreases in response to chronic neuronal depolarization. Neurosci Lett 2023; 809:137305. [PMID: 37210067 PMCID: PMC10330850 DOI: 10.1016/j.neulet.2023.137305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Interactions between AMPA receptors and synaptic scaffolding proteins are key regulators of synaptic receptor density and, thereby, synapse strength. Shank3 is one such scaffolding protein with high clinical relevance, as genetic variants and deletions of this protein have been linked to autism spectrum disorder. Shank3 acts as a master regulator of the postsynaptic density of glutamatergic synapses, interacting with ionotropic and metabotropic glutamate receptors and cytoskeletal elements to modulate synaptic structure. Notably, Shank3 has been shown to interact directly with the AMPAR subunit GluA1, and Shank3 knockout animals show deficits in AMPAR-mediated synaptic transmission. In this study, we sought to characterize the stability of GluA1-Shank3 interaction in response to chronic stimuli using a highly sensitive and specific proximity ligation assay. We found that GluA1-Shank3 interactions decrease in response to prolonged neuronal depolarization induced by elevated extracellular potassium, and that this reduced interaction is blocked by NMDA receptor antagonism. These results firmly establish the close interaction of GluA1 and Shank3 in cortical neurons in vitro, and that this select interaction is subject to modulation by depolarization.
Collapse
Affiliation(s)
- Madeline M Ross
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
7
|
Chau L, Davis HT, Jones T, Greene-Chandos D, Torbey M, Shuttleworth CW, Carlson AP. Spreading Depolarization as a Therapeutic Target in Severe Ischemic Stroke: Physiological and Pharmacological Strategies. J Pers Med 2022; 12:1447. [PMID: 36143232 PMCID: PMC9502975 DOI: 10.3390/jpm12091447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Spreading depolarization (SD) occurs nearly ubiquitously in malignant hemispheric stroke (MHS) and is strongly implicated in edema progression and lesion expansion. Due to this high burden of SD after infarct, it is of great interest whether SD in MHS patients can be mitigated by physiologic or pharmacologic means and whether this intervention improves clinical outcomes. Here we describe the association between physiological variables and risk of SD in MHS patients who had undergone decompressive craniectomy and present an initial case of using ketamine to target SD in MHS. METHODS We recorded SD using subdural electrodes and time-linked with continuous physiological recordings in five subjects. We assessed physiologic variables in time bins preceding SD compared to those with no SD. RESULTS Using multivariable logistic regression, we found that increased ETCO2 (OR 0.772, 95% CI 0.655-0.910) and DBP (OR 0.958, 95% CI 0.941-0.991) were protective against SD, while elevated temperature (OR 2.048, 95% CI 1.442-2.909) and WBC (OR 1.113, 95% CI 1.081-1.922) were associated with increased risk of SD. In a subject with recurrent SD, ketamine at a dose of 2 mg/kg/h was found to completely inhibit SD. CONCLUSION Fluctuations in physiological variables can be associated with risk of SD after MHS. Ketamine was also found to completely inhibit SD in one subject. These data suggest that use of physiological optimization strategies and/or pharmacologic therapy could inhibit SD in MHS patients, and thereby limit edema and infarct progression. Clinical trials using individualized approaches to target this novel mechanism are warranted.
Collapse
Affiliation(s)
- Lily Chau
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Herbert T. Davis
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Michel Torbey
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Andrew P. Carlson
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Neuroscience, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Neurosurgery, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|