1
|
Yadav RK, Johnson AO, Peeples ES. The dynamic duo: Decoding the roles of hypoxia-inducible factors in neonatal hypoxic-ischemic brain injury. Exp Neurol 2025; 386:115170. [PMID: 39884332 DOI: 10.1016/j.expneurol.2025.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) results in considerable mortality and neurodevelopmental disability, with a particularly high disease burden in low- and middle-income countries. Improved understanding of the pathophysiology underlying this injury could allow for improved diagnostic and therapeutic options. Specifically, hypoxia-inducible factors (HIF-1α and HIF-2α) likely play a key role, but that role is complex and remains understudied. This review analyses the recent findings seeking to uncover the impacts of HIF-1α and HIF-2α in neonatal hypoxic-ischemic brain injury (HIBI), focusing on their cell specific expression, time-dependant activities, and potential therapeutic implications. Recent findings have revealed temporal patterns of HIF-1α and HIF-2α expression following hypoxic-ischemic injury, with distinct functions for HIF-1α versus HIF-2α within the neonatal brain. Ongoing studies aimed at further revealing the relationship between HIF isoforms and developing targeted interventions offer promising avenues for therapeutic management which could improve long-term neurological outcomes in affected newborns.
Collapse
Affiliation(s)
- Rajnish Kumar Yadav
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America; Child Health Research Institute, Omaha, NE, United States of America
| | - Amanda O Johnson
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America; Child Health Research Institute, Omaha, NE, United States of America
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America; Child Health Research Institute, Omaha, NE, United States of America; Division of Neonatology, Children's Nebraska, Omaha, NE, United States of America.
| |
Collapse
|
2
|
Geng J, Feng J, Ke F, Fang F, Jing X, Tang J, Fang C, Zhang B. MicroRNA-124 negatively regulates STAT3 to alleviate hypoxic-ischemic brain damage by inhibiting oxidative stress. Aging (Albany NY) 2024; 16:2828-2847. [PMID: 38319722 PMCID: PMC10911356 DOI: 10.18632/aging.205513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
MicroRNA-124 (miR-124) is implicated in various neurological diseases; however, its significance in hypoxic-ischaemic brain damage (HIBD) remains unclear. This study aimed to elucidate the underlying pathophysiological mechanisms of miR-124 in HIBD. In our study performed on oxygen-glucose deprivation followed by reperfusion (OGD)/R-induced primary cortical neurons, a substantial reduction in miR-124 was observed. Furthermore, the upregulation of miR-124 significantly mitigated oxidative stress, apoptosis, and mitochondrial impairment. We demonstrated that miR-124 interacts with the signal transducer and activator of transcription 3 (STAT3) to exert its biological function using the dual-luciferase reporter gene assay. As the duration of OGD increased, miR-124 exhibited a negative correlation with STAT3. STAT3 overexpression notably attenuated the protective effects of miR-124 mimics, while knockdown of STAT3 reversed the adverse effects of the miR-124 inhibitor. Subsequently, we conducted an HIBD model in rats. In vivo experiments, miR-124 overexpression attenuated cerebral infarction volume, cerebral edema, apoptosis, oxidative stress, and improved neurological function recovery in HIBD rats. In summary, the neuroprotective effects of the miR-124/STAT3 axis were confirmed in the HIBD model. MiR-124 may serve as a potential biomarker with significant therapeutic implications for HIBD.
Collapse
Affiliation(s)
- Jiaqing Geng
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Fangzi Ke
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Fang Fang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Xiaoqi Jing
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Jiaxin Tang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Chengzhi Fang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Binghong Zhang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| |
Collapse
|
3
|
Martínez-Orgado J, Martínez-Vega M, Silva L, Romero A, de Hoz-Rivera M, Villa M, del Pozo A. Protein Carbonylation as a Biomarker of Oxidative Stress and a Therapeutic Target in Neonatal Brain Damage. Antioxidants (Basel) 2023; 12:1839. [PMID: 37891918 PMCID: PMC10603858 DOI: 10.3390/antiox12101839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress (OS) constitutes a pivotal factor within the mechanisms underlying brain damage, for which the immature brain is particularly vulnerable. This vulnerability is caused by the abundance of immature oligodendrocytes in the immature brain, which are highly susceptible to OS-induced harm. Consequently, any injurious process involving OS within the immature brain can lead to long-term myelination impairment. Among the detrimental repercussions of OS, protein carbonylation stands out as a prominently deleterious consequence. Noteworthy elevation of protein carbonylation is observable across diverse models of neonatal brain injury, following both diffuse and focal hypoxic-ischemic insults, as well as intraventricular hemorrhage, in diverse animal species encompassing rodents and larger mammals, and at varying stages of brain development. In the immature brain, protein carbonylation manifests as a byproduct of reactive nitrogen species, bearing profound implications for cell injury, particularly in terms of inflammation amplification. Moreover, protein carbonylation appears as a therapeutic target for mitigating neonatal brain damage. The administration of a potent antioxidant, such as cannabidiol, yields substantial neuroprotective effects. These encompass the reduction in cerebral damage, restoration of neurobehavioral performance, and preservation of physiological myelination. Such effects are linked to the modulation of protein carbonylation. The assessment of protein carbonylation emerges as a reliable method for comprehending the intricate mechanisms underpinning damage and neuroprotection within neonatal brain injury.
Collapse
Affiliation(s)
- José Martínez-Orgado
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
- Department of Neonatology, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain
| | - María Martínez-Vega
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - Laura Silva
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - Angela Romero
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - María de Hoz-Rivera
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - María Villa
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - Aarón del Pozo
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| |
Collapse
|
4
|
Guo L, Pei H, Yang Y, Kong Y. Betulinic acid regulates tumor-associated macrophage M2 polarization and plays a role in inhibiting the liver cancer progression. Int Immunopharmacol 2023; 122:110614. [PMID: 37423159 DOI: 10.1016/j.intimp.2023.110614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE To investigate the regulatory role and mechanism of betulinic acid (BET) in tumor-associated M2 macrophage polarization. METHODS For in vitro experiments, RAW246.7 and J774A.1 cells were used, and differentiation of M2 macrophages was induced using recombinant interleukin-4/13. The levels of M2 cell marker cytokines were measured, and the proportion of F4/80+CD206+ cells was evaluated using flow cytometry. Furthermore, STAT6 signaling was detected, and H22 and RAW246.7 cells were cocultured to assess the effect of BET on M2 macrophage polarization. Changes in the malignant behavior of H22 cells after coculturing were observed and a tumor-bearing mouse model was constructed to determine CD206 cell infiltration after BET intervention. RESULTS In vitro experiments showed that BET inhibited M2 macrophage polarization and phospho-STAT6 signal modification. Moreover, the ability to promote the malignant behavior of H22 cells was reduced in BET-treated M2 macrophages. Furthermore, in vivo experiments indicated that BET decreased M2 macrophage polarization and infiltration in the microenvironment of liver cancer. BET was noted to predominantly bind to the STAT6 site to inhibit STAT6 phosphorylation. CONCLUSION BET bound chiefly to STAT6 to inhibit STAT6 phosphorylation and decrease M2 polarization in the microenvironment of liver cancer. These findings suggest that BET exerts an antitumor effect by modulating M2 macrophage function.
Collapse
Affiliation(s)
- Li Guo
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, China.
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yi Yang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, China.
| | - Yun Kong
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, China.
| |
Collapse
|
5
|
Prados ME, Navarrete C, García-Martín A, Lastres-Cubillo I, Ponce-Díaz F, Martínez-Orgado J, Muñoz E. VCE-005.1, an hypoxia mimetic betulinic acid derivative, induces angiogenesis and shows efficacy in a murine model of traumatic brain injury. Biomed Pharmacother 2023; 162:114715. [PMID: 37075665 DOI: 10.1016/j.biopha.2023.114715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
One of the main global causes of mortality and morbidity is traumatic brain injury (TBI). Neuroinflammation and brain-blood barrier (BBB) disruption play a pivotal role in the pathogenesis of acute and chronic TBI onset. The activation of the hypoxia pathway is a promising approach for CNS neurodegenerative diseases, including TBI. Herein, we have studied the efficacy of VCE-005.1, a betulinic acid hydroxamate, against acute neuroinflammation in vitro and on a TBI mouse model. The effect of VCE-005.1 on the HIF pathway in endothelial vascular cells was assessed by western blot, gene expression, in vitro angiogenesis, confocal analysis and MTT assays. In vivo angiogenesis was evaluated through a Matrigel plug model and a mouse model of TBI induced by a controlled cortical impact (CCI) was used to assess VCE-005.1 efficacy. VCE-005.1 stabilized HIF-1α through a mechanism that involved AMPK and stimulated the expression of HIF-dependent genes. VCE-005.1 protected vascular endothelial cells under prooxidant and pro-inflammatory conditions by enhancing TJ protein expression and induced angiogenesis both in vitro and in vivo. Furthermore, in CCI model, VCE-005.1 greatly improved locomotor coordination, increased neovascularization and preserved BBB integrity that paralleled with a large reduction of peripheral immune cells infiltration, recovering AMPK expression and reducing apoptosis in neuronal cells. Taken together, our results demonstrate that VCE-005.1 is a multitarget compound that shows anti-inflammatory and neuroprotective effects mainly by preventing BBB disruption and has the potential to be further developed pharmacologically in TBI and maybe other neurological conditions that concur with neuroinflammation and BBB disruption.
Collapse
Affiliation(s)
| | - Carmen Navarrete
- Maimonides Biomedical Research Institute of Cordoba, Spain; Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain; Reina Sofía University Hospital, Cordoba, Spain
| | - Adela García-Martín
- Maimonides Biomedical Research Institute of Cordoba, Spain; Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain; Reina Sofía University Hospital, Cordoba, Spain
| | | | - Francisco Ponce-Díaz
- Maimonides Biomedical Research Institute of Cordoba, Spain; Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain; Reina Sofía University Hospital, Cordoba, Spain
| | | | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Cordoba, Spain; Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain; Reina Sofía University Hospital, Cordoba, Spain.
| |
Collapse
|
6
|
Neuroprotective Effects of Betulinic Acid Hydroxamate in Intraventricular Hemorrhage-Induced Brain Damage in Immature Rats. Nutrients 2022; 14:nu14245286. [PMID: 36558445 PMCID: PMC9786890 DOI: 10.3390/nu14245286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Intraventricular hemorrhage (IVH) is an important cause of long-term disability in extremely preterm infants, with no current treatment. We aimed to study in an IVH model in immature rats the neuroprotective effect of betulinic acid hydroxamate (BAH), a B55α/PP2A activator that inhibits the activity of the hypoxia-inducing factor prolyl-hydroxylase type 2. IVH was induced in 1-day-old (P1) Wistar rats by the left periventricular injection of Clostridial collagenase. Then, pups received i.p. vehicle or BAH 3 mg/kg single dose. At P6, P14 and P45, brain damage (area of damage, neurobehavioral deficits, Lactate/N-acetylaspartate ratio), white matter injury (WMI: corpus callosum atrophy and myelin basic protein signal reduction) and inflammation (TLR4, NF-κB and TNFα expression), excitotoxicity (Glutamate/N-acetylspartate) and oxidative stress (protein nitrosylation) were evaluated. BAH treatment did not reduce the volume of brain damage, but it did reduce perilesional tissue damage, preventing an IVH-induced increase in Lac/NAA. BAH restored neurobehavioral performance at P45 preventing WMI. BAH prevented an IVH-induced increase in inflammation, excitotoxicity and oxidative stress. In conclusion, in immature rats, BAH reduced IVH-induced brain damage and prevented its long-term functional consequences, preserving normal myelination in a manner related to the modulation of inflammation, excitotoxicity and oxidative stress.
Collapse
|