1
|
Zhang B, Leung L, Su EJ, Lawrence DA. PA System in the Pathogenesis of Ischemic Stroke. Arterioscler Thromb Vasc Biol 2025; 45:600-608. [PMID: 40143813 PMCID: PMC12037151 DOI: 10.1161/atvbaha.125.322422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025]
Abstract
Ischemic stroke remains a leading cause of morbidity and mortality worldwide, driven by complex pathophysiological mechanisms that make finding effective treatments challenging. PAs (plasminogen activators) play a critical role in fibrinolysis and vascular homeostasis and as such are important factors affecting stroke outcome. This review examines the complex relationships between ischemic stroke and PAs, highlighting their physiological, pathological, and therapeutic effects on ischemic stroke. We focus on recombinant tissue-type PA as the only Food and Drug Administration-approved thrombolytic agent, describing its clinical impact and associated obstacles impacting its wide-scale use, such as blood-brain barrier disruption and inflammation. Furthermore, emerging PA-based therapies and combination strategies are explored to address the limitations of recombinant tissue-type PA. By integrating mechanistic information with clinical developments, this review aims to provide insights for the advancement of PA-centered approaches to improve the safety and efficacy of stroke treatments.
Collapse
Affiliation(s)
- Boxin Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road of Kaifu District, Changsha, 410008, China
| | - Lisa Leung
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Enming J. Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Chao AC, Lee TH, Pettigrew LC, Hannawi Y, Huang HY, Chi NF, Chan L, Chen PL, Devlin T. Intravenous Odatroltide for Acute Ischemic Stroke Within 24 Hours of Onset: A Phase 2, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study. Drug Des Devel Ther 2024; 18:2033-2042. [PMID: 38859883 PMCID: PMC11164084 DOI: 10.2147/dddt.s460831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose Odatroltide (LT3001), a novel small synthetic peptide molecule designed to recanalize occluded blood vessels and reduce reperfusion injury, is safe and efficacious in multiple embolic stroke animal models. This study aimed to investigate the safety and tolerability of intravenous administration of odatroltide in patients with acute ischemic stroke within 24 hours of onset. Patients and Methods Patients with National Institutes of Health Stroke Scale (NIHSS 4-30) who were untreated with intravenous thrombolysis or endovascular thrombectomy were randomized (2:1) to receive a single dose of odatroltide (0.025 mg/kg) or placebo within 24 hours of stroke symptom onset. The primary safety outcome was symptomatic intracranial hemorrhage (sICH) occurrence within 36 hours. Results Twenty-four patients were enrolled and randomized; of these 16 and 8 received intravenous odatroltide infusion and placebo, respectively. sICH did not occur in both groups, and other safety measures were comparable between the groups. The rate of excellent functional outcome (modified Rankin Scale score, 0-1, at 90 days) was 21% and 14% in the odatroltide and placebo groups, respectively. Furthermore, 47% and 14% of patients in the odatroltide and placebo groups, respectively, showed major neurological improvement (NIHSS improvement ≥4 points from baseline to 30 days). Among the 9 odatroltide-treated patients with baseline NIHSS ≥6, 78% showed major neurological improvement. Conclusion Compared with placebo, treatment with intravenous odatroltide within 24 hours following onset of ischemic stroke appears to be safe and may be associated with better neurological and functional outcomes. However, the efficacy and safety of odatroltide requires further confirmation in the next phase of clinical trials. Clinical Trial Registration Clinicaltrials.gov identifier: NCT04091945.
Collapse
Affiliation(s)
- A-Ching Chao
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsong-Hai Lee
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Luther C Pettigrew
- Department of Neurology, University of Kentucky Chandler Medical Center, Lexington, KY, USA
| | - Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hung-Yu Huang
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Nai-Fang Chi
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cerebrovascular Diseases, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Lin Chen
- Division of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Thomas Devlin
- CHI Memorial Neuroscience Institute, Chattanooga, TN, USA
- Department of Neurology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Jia J, Jiao W, Wang G, Wu J, Huang Z, Zhang Y. Drugs/agents for the treatment of ischemic stroke: Advances and perspectives. Med Res Rev 2024; 44:975-1012. [PMID: 38126568 DOI: 10.1002/med.22009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Ischemic stroke (IS) poses a significant threat to global human health and life. In recent decades, we have witnessed unprecedented progresses against IS, including thrombolysis, thrombectomy, and a few medicines that can assist in reopening the blocked brain vessels or serve as standalone treatments for patients who are not eligible for thrombolysis/thrombectomy therapies. However, the narrow time windows of thrombolysis/thrombectomy, coupled with the risk of hemorrhagic transformation, as well as the lack of highly effective and safe medications, continue to present big challenges in the acute treatment and long-term recovery of IS. In the past 3 years, several excellent articles have reviewed pathophysiology of IS and therapeutic medicines for the treatment of IS based on the pathophysiology. Regretfully, there is no comprehensive overview to summarize all categories of anti-IS drugs/agents designed and synthesized based on molecular mechanisms of IS pathophysiology. From medicinal chemistry view of point, this article reviews a multitude of anti-IS drugs/agents, including small molecule compounds, natural products, peptides, and others, which have been developed based on the molecular mechanism of IS pathophysiology, such as excitotoxicity, oxidative/nitrosative stresses, cell death pathways, and neuroinflammation, and so forth. In addition, several emerging medicines and strategies, including nanomedicines, stem cell therapy and noncoding RNAs, which recently appeared for the treatment of IS, are shortly introduced. Finally, the perspectives on the associated challenges and future directions of anti-IS drugs/agents are briefly provided to move the field forward.
Collapse
Affiliation(s)
- Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Weijie Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Guan Wang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Hermida A, Ader F, Millat G, Jedraszak G, Maury P, Cador R, Catalan PA, Clerici G, Combes N, De Groote P, Dupin-Deguine D, Eschalier R, Faivre L, Garcia P, Guillon B, Janin A, Kugener B, Lackmy M, Laredo M, Le Guillou X, Lesaffre F, Lucron H, Milhem A, Nadeau G, Nguyen K, Palmyre A, Perdreau E, Picard F, Rebotier N, Richard P, Rooryck C, Seitz J, Verloes A, Vernier A, Winum P, Yabeta GAD, Bouchot O, Chevalier P, Charron P, Gandjbakhch E. NEXN Gene in Cardiomyopathies and Sudden Cardiac Deaths: Prevalence, Phenotypic Expression, and Prognosis. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004285. [PMID: 38059363 DOI: 10.1161/circgen.123.004285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Few clinical data are available on NEXN mutation carriers, and the gene's involvement in cardiomyopathies or sudden death has not been fully established. Our objectives were to assess the prevalence of putative pathogenic variants in NEXN and to describe the phenotype and prognosis of patients carrying the variants. METHODS DNA samples from consecutive patients with cardiomyopathy or sudden cardiac death/sudden infant death syndrome/idiopathic ventricular fibrillation were sequenced with a custom panel of genes. Index cases carrying at least one putative pathogenic variant in the NEXN gene were selected. RESULTS Of the 9516 index patients sequenced, 31 were carriers of a putative pathogenic variant in NEXN only, including 2 with double variants and 29 with a single variant. Of the 29 unrelated probands with a single variant (16 males; median age at diagnosis, 32.0 [26.0-49.0] years), 21 presented with dilated cardiomyopathy (prevalence, 0.33%), and 3 presented with hypertrophic cardiomyopathy (prevalence, 0.14%). Three patients had idiopathic ventricular fibrillation, and there were 2 cases of sudden infant death syndrome (prevalence, 0.46%). For patients with dilated cardiomyopathy, the median left ventricle ejection fraction was 37.5% (26.25-50.0) at diagnosis and improved with treatment in 13 (61.9%). Over a median follow-up period of 6.0 years, we recorded 3 severe arrhythmic events and 2 severe hemodynamic events. CONCLUSIONS Putative pathogenic NEXN variants were mainly associated with dilated cardiomyopathy; in these individuals, the prognosis appeared to be relatively good. However, severe and early onset phenotypes were also observed-especially in patients with double NEXN variants. We also detected NEXN variants in patients with hypertrophic cardiomyopathy and sudden infant death syndrome/idiopathic ventricular fibrillation, although a causal link could not be established.
Collapse
Affiliation(s)
- Alexis Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service (A.H.), Amiens-Picardie University Hospital
- EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens (A.H., G.J.)
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition (A.H., M. Laredo, P. Charron, E.G.)
- Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital (A.H., P. Charron, E.G.)
| | - Flavie Ader
- Unité Pédagogique de Biochimie, Département des Sciences Biologiques et Médicales, UFR de Pharmacie-Faculté de Santé, Université Paris Cité (F.A.)
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, DMU Biogem, Service de Biochimie Métabolique, AP-HP-Sorbonne Université, Pitié-Salpêtrière -Charles Foix (F.A., P.R.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
| | - Gilles Millat
- Service de Génétique Moléculaire, Hospices Civils de Lyon (G.M., A.J.)
| | - Guillaume Jedraszak
- Molecular Genetics Laboratory (G.J.), Amiens-Picardie University Hospital
- EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens (A.H., G.J.)
| | | | - Romain Cador
- Service de Cardiologie, Hôpital Saint Joseph, Paris (R.C.)
| | | | - Gaël Clerici
- Service de Cardiologie, Centre hospitalier universitaire, Saint Pierre, La Réunion (G.C.)
| | - Nicolas Combes
- Service de Cardiologie, Clinique Pasteur, Toulouse (N.C.)
| | - Pascal De Groote
- France CHU Lille, Service de Cardiologie & Inserm U1167, Institut Pasteur de Lille (P.D.G.)
| | | | | | | | - Patricia Garcia
- Unité Mort Inattendue du Nourrisson, Hôpital de la Conception, APHM, Marseille (P.G.)
| | | | - Alexandre Janin
- Service de Génétique Moléculaire, Hospices Civils de Lyon (G.M., A.J.)
| | | | - Marylin Lackmy
- Unité de Génétique Clinique, CHU de Guadeloupe, Pointe à Pitre (M. Lackmy)
| | - Mikael Laredo
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition (A.H., M. Laredo, P. Charron, E.G.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
| | | | | | - Hugues Lucron
- Service de Cardiologie pédiatrique, CHU Martinique, Fort-de-France (H.L.)
| | | | - Gwenaël Nadeau
- Service de génétique clinique CH Métropole Savoie, Chambéry (G.N.)
| | | | - Aurélien Palmyre
- APHP, Ambroise Paré Hospital, Department of Genetics and Referral center for cardiac hereditary cardiac diseases, Boulogne-Billancourt (A.P., P. Charron)
| | - Elodie Perdreau
- Département médico chirurgical de cardiologie pédiatrique (E.P.), Hôpital Louis Pradel, HCL, Lyon
| | - François Picard
- Service de Cardiologie, Hôpital Cardiologique Haut Leveque, Bordeaux (F.P.)
| | | | - Pascale Richard
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, DMU Biogem, Service de Biochimie Métabolique, AP-HP-Sorbonne Université, Pitié-Salpêtrière -Charles Foix (F.A., P.R.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
| | | | - Julien Seitz
- Service de Cardiologie, Hôpital Saint Joseph, Marseille (J.S.)
| | - Alain Verloes
- Departement de génétique, Hôpital Robert Debré, APHP (A. Verloes)
| | | | | | - Grace-A-Dieu Yabeta
- Service de Cardiologie, CH Ouest Guyane, Saint-Laurent-du-Maroni (G.-A.-D.Y.)
| | - Océane Bouchot
- Service de Cardiologie, CH Annecy Genevois, Annecy, France (O.B.)
| | | | - Philippe Charron
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition (A.H., M. Laredo, P. Charron, E.G.)
- Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital (A.H., P. Charron, E.G.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
- APHP, Ambroise Paré Hospital, Department of Genetics and Referral center for cardiac hereditary cardiac diseases, Boulogne-Billancourt (A.P., P. Charron)
| | - Estelle Gandjbakhch
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition (A.H., M. Laredo, P. Charron, E.G.)
- Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital (A.H., P. Charron, E.G.)
- Sorbonne Université, INSERM 1166, Paris (F.A., M. Laredo, P.R., P. Charron, E.G.)
| |
Collapse
|
6
|
Wechsler LR, Adeoye O, Alemseged F, Bahr-Hosseini M, Deljkich E, Favilla C, Fisher M, Grotta J, Hill MD, Kamel H, Khatri P, Lyden P, Mirza M, Nguyen TN, Samaniego E, Schwamm L, Selim M, Silva G, Yavagal DR, Yenari MA, Zachrison KS, Boltze J, Yaghi S. Most Promising Approaches to Improve Stroke Outcomes: The Stroke Treatment Academic Industry Roundtable XII Workshop. Stroke 2023; 54:3202-3213. [PMID: 37886850 DOI: 10.1161/strokeaha.123.044279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
The Stroke Treatment Academic Industry Roundtable XII included a workshop to discuss the most promising approaches to improve outcome from acute stroke. The workshop brought together representatives from academia, industry, and government representatives. The discussion examined approaches in 4 epochs: pre-reperfusion, reperfusion, post-reperfusion, and access to acute stroke interventions. The participants identified areas of priority for developing new and existing treatments and approaches to improve stroke outcomes. Although many advances in acute stroke therapy have been achieved, more work is necessary for reperfusion therapies to benefit the most possible patients. Prioritization of promising approaches should help guide the use of resources and investigator efforts.
Collapse
Affiliation(s)
- Lawrence R Wechsler
- University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (L.R.W.)
| | - Opeolu Adeoye
- Washington University School of Medicine, St. Louis, MO (O.A.)
| | | | | | | | | | - Marc Fisher
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (M.F.)
| | | | | | - Hooman Kamel
- Weill Cornel School of Medicine, New York, NY (H.K.)
| | - Pooja Khatri
- University of Cincinnati Medical Center, OH (P.K.)
| | - Patrick Lyden
- University of Southern California, Los Angeles, CA (P.L.)
| | | | | | | | - Lee Schwamm
- Massachusetts General Hospital, Boston (L.S.)
| | - Magdy Selim
- Beth Israel Deaconess Medical Center, Boston, MA (M.S.)
| | | | | | | | | | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom (J.B.)
| | | |
Collapse
|