1
|
Zhu Y, Li X, Lei X, Tang L, Wen D, Zeng B, Zhang X, Huang Z, Guo Z. The potential mechanism and clinical application value of remote ischemic conditioning in stroke. Neural Regen Res 2025; 20:1613-1627. [PMID: 38845225 PMCID: PMC11688546 DOI: 10.4103/nrr.nrr-d-23-01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 08/07/2024] Open
Abstract
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
Collapse
Affiliation(s)
- Yajun Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoguo Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingwei Lei
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuyang Tang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daochen Wen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Zeng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofeng Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zichao Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongduo Guo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Zhao ZA, Lv Y, Chen HS. Effect of RICAS (Remote Ischemic Preconditioning on Collaterals of Atherosclerosis Stroke): Rationale and Design. J Am Heart Assoc 2025; 14:e038570. [PMID: 39968799 DOI: 10.1161/jaha.124.038570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
BACKGROUND As a noninvasive, low-cost, nonpharmacological procedure with excellent properties of safety, remote ischemic conditioning (RIC) has been demonstrated to prevent recurrence of stroke among patients with ischemic stroke of large artery atherosclerosis origin. We hypothesized that the benefit is attributed to the improvement of collaterals by chronic RIC in this population, and we aimed to explore the influence of chronic RIC on collateral status evaluated by digital subtraction angiography in this population. METHODS The RICAS (Remote Ischemic Preconditioning on Collaterals of Atherosclerosis Stroke) study is a prospective, randomized, blind end point, multicenter study. Eligible patients with ischemic stroke of anterior circulation caused by large artery atherosclerosis, poor collateral compensation, and more than 1 month of symptom onset, are randomly assigned into experimental and control groups with a ratio of 1:1. The patients in the experiment group will receive treatment with RIC (bilateral upper limbs, for a total procedure time of 50 minutes, twice daily) for 1 year as an adjunct to guideline-based treatment, while patients in the control group only receive guideline-based treatment. A maximum of 300 patients (150 participants per group) are required to test the superiority hypothesis with 80% power (using a 2-sided α=0.05) to detect a 15% difference. Subgroup analyses for the primary end point will be performed on 8 prespecified subgroups by age, sex, ischemic event (acute ischemic stroke ore transient ischemic stroke), tandem lesion, history of hypertension, hypercholesterolemia, diabetes, and myocardial infarction. The primary outcome is the proportion of collateral status improvement, which is defined as an increase of ≥1 point on the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology score, as assessed by digital subtraction angiography at 12 months after randomization. The safety outcomes include RIC-related adverse events. CONCLUSIONS This study may provide the direct evidence for the potential effect of chronic RIC treatment on the improvement of collateral status. REGISTRATION URL: https://clinicaltrials.gov. Unique identifier: NCT06170944.
Collapse
Affiliation(s)
- Zi-Ai Zhao
- Department of Neurology General Hospital of Northern Theatre Command Shenyang China
| | - Yan Lv
- Department of Neurology General Hospital of Northern Theatre Command Shenyang China
| | - Hui-Sheng Chen
- Department of Neurology General Hospital of Northern Theatre Command Shenyang China
| |
Collapse
|
3
|
Kaloss AM, de Jager C, Lyles K, Groot NA, Zhu J, Lin Y, Xie H, Matson JB, Theus MH. Tie2-Dependent Mechanisms Promote Leptomeningeal Collateral Remodeling and Reperfusion Following Stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640890. [PMID: 40093127 PMCID: PMC11908148 DOI: 10.1101/2025.02.28.640890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Leptomeningeal collaterals are distal pial arterial anastomotic vessels that provide an alternative route for redistributing cerebral blood flow following arterial obstruction, thereby limiting tissue damage. However, the regulatory mechanisms and strategies to enhance this adaptive response remain under investigation. This study explored the pharmacological effects of Tie2 receptor activation, using the peptide agonist Vasculotide, following permanent middle cerebral artery occlusion (pMCAO). Vasculotide improved collateral growth and remodeling, which correlated with reduced infarct volume, enhanced blood flow, and functional recovery within 24hrs post-pMCAO. In contrast, collateral growth was attenuated in Tie2 and EphA4/Tie2 double knockdown mice, while the loss of EphA4 increased Tie2 and Ang-1 expression and mimicked the positive effects of Vasculotide following stroke. Furthermore, bulk RNA sequencing of meningeal tissue identified key transcriptomic changes, including alterations in AJ-associated transcripts, such as Krt5 , Krt14 , and Col17a1 , in the ipsilateral meninges of both endothelial cell-specific EphA4 knockout and Vasculotide-treated mice. Krt5 expression was found upregulated on meningeal arterial vascular network in injured KO mice, highlighting a potential new mediator of meningeal vascular remodeling. These findings illustrate that EphA4 and Tie2 play opposing roles in collateral remodeling, including the regulation of Krt5. Modulating their activity could potentially enhance the collateral response to stroke.
Collapse
|
4
|
Yedavalli V, Adel Salim H, Lakhani DA, Balar A, Mei J, Luna L, Deng F, Hyson NZ, Fiehler J, Stracke P, Broocks G, Heitkamp C, Albers GW, Wintermark M, Faizy TD, Heit JJ. High Hypoperfusion Intensity Ratio Is Independently Associated with Very Poor Outcomes in Large Ischemic Core Stroke. Clin Neuroradiol 2025; 35:131-139. [PMID: 39373942 DOI: 10.1007/s00062-024-01463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Recent advances have highlighted the efficacy of endovascular thrombectomy (EVT) in patients with large ischemic core stroke, yet a significant portion still experience very poor outcomes, defined as a 90-day modified Rankin Score (mRS) of 5-6. This study aims to investigate the hypoperfusion intensity ratio (HIR) as a prognostic imaging parameter for these outcomes. METHODS In a multicenter retrospective cohort study, data from consecutive patients undergoing EVT for acute ischemic stroke with large vessel occlusion (AIS-LVO) at two comprehensive stroke centers were analyzed. The study included patients with an Alberta Stroke Program Early CT Score (ASPECTS) of 5 or less and utilized pretreatment perfusion imaging to calculate HIR. The primary outcome was very poor outcomes (90 days mRS 5-6). RESULTS Among 102 patients included, 59 (57.8%) had very poor outcome (90 days mRS 5-6). Multivariable logistic regression analysis adjusting for multiple covariates including admission National Institutes of Health Stroke Scale (NIHSS) and EVT revealed that higher admission NIHSS (adjusted odds ratio [aOR] 1.224, 95% CI 1.089-1.374, p = 0.001) and HIR (aOR per 0.1 incremental change, 1.34, 95% CI 1.02-1.82, P = 0.042) were independently associated with very poor outcomes. CONCLUSION This study demonstrates that admission NIHSS and HIR are independently associated with very poor outcome (90 days mRS 5-6) in patients with large ischemic core strokes. These findings highlight the importance of collateral status and perfusion imaging in predicting outcomes in this patient population, suggesting a potential role for HIR in the triage and management of large core stroke patients.
Collapse
Affiliation(s)
- Vivek Yedavalli
- Department of Radiology, Division of Neuroradiology, Johns Hopkins Medical Center, Baltimore, MD, USA.
| | - Hamza Adel Salim
- Department of Radiology, Division of Neuroradiology, Johns Hopkins Medical Center, Baltimore, MD, USA
- Department of Neuroradiology, MD Anderson Medical Center, 77030, Houston, TX, USA
| | - Dhairya A Lakhani
- Department of Radiology, Division of Neuroradiology, Johns Hopkins Medical Center, Baltimore, MD, USA
| | - Aneri Balar
- Department of Radiology, Division of Neuroradiology, Johns Hopkins Medical Center, Baltimore, MD, USA
| | - Janet Mei
- Department of Radiology, Division of Neuroradiology, Johns Hopkins Medical Center, Baltimore, MD, USA
| | - Licia Luna
- Department of Radiology, Division of Neuroradiology, Johns Hopkins Medical Center, Baltimore, MD, USA
| | - Francis Deng
- Department of Radiology, Division of Neuroradiology, Johns Hopkins Medical Center, Baltimore, MD, USA
| | - Nathan Z Hyson
- Department of Radiology, Division of Neuroradiology, Johns Hopkins Medical Center, Baltimore, MD, USA
| | - Jens Fiehler
- Department of Radiology, Neuroendovascular Program, University Medical Center Hamburg, Hamburg, Germany
| | - Paul Stracke
- Department of Radiology, Neuroendovascular Program, University Medical Center Münster, Münster, Germany
| | - Gabriel Broocks
- Department of Radiology, Neuroendovascular Program, University Medical Center Hamburg, Hamburg, Germany
| | - Christian Heitkamp
- Department of Radiology, Neuroendovascular Program, University Medical Center Hamburg, Hamburg, Germany
| | - Gregory W Albers
- Department of Interventional Neuroradiology, Stanford Medical Center, Palo Alto, CA, USA
| | - Max Wintermark
- Department of Neuroradiology, MD Anderson Medical Center, 77030, Houston, TX, USA
| | - Tobias D Faizy
- Department of Radiology, Neuroendovascular Program, University Medical Center Münster, Münster, Germany
| | - Jeremy J Heit
- Department of Interventional Neuroradiology, Stanford Medical Center, Palo Alto, CA, USA
| |
Collapse
|
5
|
Liu QY, Cui Y, Li W, Qiu J, Nguyen TN, Chen HS. Effect of remote ischemic preconditioning on cerebral circulation time in severe carotid artery stenosis: Results from the RIC-CCT trial. Cell Rep Med 2024; 5:101796. [PMID: 39471820 PMCID: PMC11604480 DOI: 10.1016/j.xcrm.2024.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/21/2024] [Accepted: 09/27/2024] [Indexed: 11/01/2024]
Abstract
In patients with severe internal carotid artery stenosis (sICAS), cerebral circulation time (CCT) is associated with cerebral hyperperfusion syndrome. This study aims to investigate the effect of remote ischemic preconditioning (RIC) on CCT in patients with sICAS. Patients are randomly assigned to the RIC group (RIC twice daily, for 2-4 days before carotid artery stenting [CAS] as an adjunct to standard medical therapy) and the control group. The results show that RIC produces a significant decrease in CCT of the stenosis side (sCCT) from baseline to pre-CAS, and the occurrence of contrast staining on brain computed tomography (CT) is lower in RIC versus control group after CAS. In addition, significant changes in some serum biomarkers suggest that anti-neuroinflammation, anti-oxidative stress, protecting endothelial injury, and improving cerebral autoregulation may be associated with the effect of RIC. These findings provide supporting evidence that RIC can modulate cerebral circulation in patients with sICAS. This study was registered at ClinicalTrials.gov (NCT05451030).
Collapse
Affiliation(s)
- Quan-Ying Liu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Yu Cui
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Wei Li
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Jing Qiu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Thanh N Nguyen
- Department of Neurology, Radiology, Boston Medical Center, Boston, MA, USA
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China.
| |
Collapse
|
6
|
Wang J, Xiong T, Wu Q, Qin X. Integrated Strategies for Targeting Arteriogenesis and Angiogenesis After Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01291-4. [PMID: 39225878 DOI: 10.1007/s12975-024-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The interdependence between arteriogenesis and angiogenesis is crucial for enhancing perfusion by synchronously improving leptomeningeal collaterals (LMCs) and microvascular networks after stroke. However, current approaches often focus on promoting arteriogenesis and angiogenesis separately, neglecting the potential synergistic benefits of targeting both processes simultaneously. Therefore, it is imperative to consider both arteriogenesis and angiogenesis as integral and complementary strategies for post-stroke revascularization. To gain a deeper understanding of their relationships after stroke and to facilitate the development of targeted revascularization strategies, we compared them based on their timescale, space, and pathophysiology. The temporal differences in the occurrence of arteriogenesis and angiogenesis allow them to restore blood flow at different stages after stroke. The spatial differences in the effects of arteriogenesis and angiogenesis enable them to specifically target the ischemic penumbra and core infarct region. Additionally, the endothelial cell, as the primary effector cell in their pathophysiological processes, is promising target for enhancing both. Therefore, we provide an overview of key signals that regulate endothelium-mediated arteriogenesis and angiogenesis. Finally, we summarize current therapeutic strategies that involve these signals to promote both processes after stroke, with the aim of inspiring future therapeutic advances in revascularization.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Taoying Xiong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Zhu Y, Li X, Wen D, Huang Z, Yan J, Zhang Z, Wang Y, Guo Z. Remote Ischemic Post-conditioning Reduces Cognitive Impairment in Rats Following Subarachnoid Hemorrhage: Possible Involvement in STAT3/STAT5 Phosphorylation and Th17/Treg Cell Homeostasis. Transl Stroke Res 2024:10.1007/s12975-024-01235-y. [PMID: 38356020 DOI: 10.1007/s12975-024-01235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The inflammatory response following subarachnoid hemorrhage (SAH) may lead to Early Brain Injury and subsequently contribute to poor prognosis such as cognitive impairment in patients. Currently, there is a lack of effective strategies for SAH to ameliorate inflammation and improve cognitive impairment in clinical. This study aims to examine the inhibitory impact of remote ischemic post-conditioning (RIPostC) on the body's inflammatory response by regulating Th17/Treg cell homeostasis after SAH. The ultimate goal is to search for potential early treatment targets for SAH. The rat SAH models were made by intravascular puncture of the internal carotid artery. The intervention of RIPostC was administered for three consecutive days immediately after successful modeling. Behavioral experiments including the Morris water maze and Y-maze tests were conducted to assess cognitive functions such as spatial memory, working memory, and learning abilities 2 weeks after successful modeling. The ratio of Th17 cells and Treg cells in the blood was detected using flow cytometry. Immunofluorescence was used to observe the infiltration of neutrophils into the brain. Signal transducers and activators of transcription 5 (STAT5) and signal transducers and activators of transcription 3 (STAT3) phosphorylation levels, receptor-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) levels were detected by Western blot. The levels of anti-inflammatory factors (IL-2, IL-10, IL-5, etc.) and pro-inflammatory factors (IL-6, IL-17, IL-18, TNF-α, IL-14, etc.) in blood were detected using Luminex Liquid Suspension Chip Assay. RIPostC significantly improved the cognitive impairment caused by SAH in rats. The results showed that infiltration of Th17 cells and neutrophils into brain tissue increased after SAH, leading to the release of pro-inflammatory factors (IL-6, IL-17, IL-18, and TNF-α). This response can be inhibited by RIPostC. Additionally, RIPostC facilitates the transfer of Treg from blood to the brain and triggers the release of anti-inflammatory (IL-2, IL-10, and IL-5) factors to suppress the inflammation following SAH. Finally, it was found that RIPostC increased the phosphorylation of STAT5 while decreasing the phosphorylation of STAT3. RIPostC reduces inflammation after SAH by partially balancing Th17/Treg cell homeostasis, which may be related to downregulation of STAT3 and upregulation of STAT5 phosphorylation, which ultimately alleviates cognitive impairment in rats. Targeting Th17/Treg cell homeostasis may be a promising strategy for early SAH treatment.
Collapse
Affiliation(s)
- Yajun Zhu
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Xiaoguo Li
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - DaoChen Wen
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zichao Huang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Jin Yan
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zhaosi Zhang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Yingwen Wang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zongduo Guo
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
8
|
Ouyang F, Wang B, Wu Q, Yang Q, Meng X, Liu J, Xu Z, Lv L, Zeng X. Association of intravascular enhancement sign detected on high-resolution vessel wall imaging with ischaemic events in middle cerebral artery occlusion. Eur J Radiol 2023; 165:110922. [PMID: 37320882 DOI: 10.1016/j.ejrad.2023.110922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE Patients with intracranial artery occlusion have high rates of ischaemic events and recurrence. Early identification of patients with high-risk factors is therefore beneficial for prevention. Here we assessed the association between the intravascular enhancement sign (IVES) on high-resolution vessel wall imaging (HR-VWI) and acute ischaemic stroke (AIS) in a population with middle cerebral artery (MCA) occlusion. METHOD We retrospectively analysed the records of 106 patients with 111 MCA occlusions, including 60 with and 51 without AIS, who had undergone HR-VWI and computed tomography angiography (CTA) examinations from November 2016 to February 2023. Numbers of IVES vessels were counted and compared to the CTA findings. Statistical analyses of demographic and medical data were also performed. RESULTS Occurrence rates and numbers of IVES vessels were significantly higher in the AIS than the non-AIS group (P < 0.05), and most vessels were detected on CTA. Numbers of vessels positively correlated with AIS occurrence (rho = 0.664; P < 0.0001). A multivariable ordinal logistic regression model adjusted for age, degree of wall enhancement, hypertension, and heart status identified the number of IVES vessels as an independent predictor for AIS (odds ratio = 1.6; 95% CI, 1.3-1.9; P < 0.0001). CONCLUSION Number of IVES vessels is an independent risk factor for AIS events, and may represent poor cerebral blood flow status and collateral compensation level. It thus provides cerebral haemodynamic information for patients with MCA occlusion for clinical use.
Collapse
Affiliation(s)
- Feng Ouyang
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Bo Wang
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Qin Wu
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Qiao Yang
- Department of Neurology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Xiangqiang Meng
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Jie Liu
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Zihe Xu
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Lianjiang Lv
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Xianjun Zeng
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China.
| |
Collapse
|