1
|
Li C, Luo Y, Li S. Mechanistic insights of neuronal death and neuroprotective therapeutic approaches in stroke. Neural Regen Res 2026; 21:869-886. [PMID: 40313116 DOI: 10.4103/nrr.nrr-d-24-01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/22/2025] [Indexed: 05/03/2025] Open
Abstract
Stroke, particularly ischemic stroke, is the leading cause of long-term disability and mortality worldwide. It occurs due to the occlusion of the cerebral arteries, which significantly reduces the delivery of blood, oxygen, and essential nutrients to brain tissues. This deprivation triggers a cascade of cellular events that ultimately leads to neuronal death. Recent studies have clarified the multifactorial pathogenesis of ischemic stroke, highlighting the roles of energy failure, excitotoxicity, oxidative stress, neuroinflammation, and apoptosis. This review aimed to provide a comprehensive insight into the fundamental mechanisms driving neuronal death triggered by ischemia and to examine the progress of neuroprotective therapeutic approaches designed to mitigate neuronal loss and promote neurological recovery after a stroke. Additionally, we explored widely accepted findings regarding the potential pathways implicated in neuronal death during ischemic stroke, including the interplay of apoptosis, autophagy, pyroptosis, ferroptosis, and necrosis, which collectively influence neuronal fate. We also discussed advancements in neuroprotective therapeutics, encompassing a range of interventions from pharmacological modulation to stem cell-based therapies, aimed at reducing neuronal injury and enhancing functional recovery following ischemic stroke. Despite these advancements, challenges remain in translating mechanistic insights into effective clinical therapies. Although neuroprotective strategies have shown promise in preclinical models, their efficacy in human trials has been inconsistent, often due to the complex pathology of ischemic stroke and the timing of interventions. In conclusion, this review synthesizes mechanistic insights into the intricate interplay of molecular and cellular pathways driving neuronal death post-ischemia. It sheds light on cutting-edge advancements in potential neuroprotective therapeutics, underscores the promise of regenerative medicine, and offers a forward-looking perspective on potential clinical breakthroughs. The ongoing evolution of precision-targeted interventions is expected to significantly enhance preventative strategies and improve clinical outcomes.
Collapse
Affiliation(s)
- Chun Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuping Luo
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Wang Y, Cao Y, Xie W, Guo Y, Cai J, Huang T, Li P. Advances in clinical translation of stem cell-based therapy in neurological diseases. J Cereb Blood Flow Metab 2025; 45:600-616. [PMID: 39883811 PMCID: PMC11783424 DOI: 10.1177/0271678x251317374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Stem cell-based therapies have raised considerable interest to develop regenerative treatment for neurological disorders with high disability. In this review, we focus on recent preclinical and clinical evidence of stem cell therapy in the treatment of degenerative neurological diseases and discuss different cell types, delivery routes and biodistribution of stem cell therapy. In addition, recent advances of mechanistic insights of stem cell therapy, including functional replacement by exogenous cells, immunomodulation and paracrine effects of stem cell therapies are also demonstrated. Finally, we also highlight the adjunction approaches that has been implemented to augment their reparative function, survival and migration to target specific tissue, including stem cell preconditioning, genetical engineering, co-transplantation and combined therapy.
Collapse
Affiliation(s)
- Yu Wang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yirong Cao
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Wanqing Xie
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Yunlu Guo
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Jiayi Cai
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Huang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Peiying Li
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| |
Collapse
|
3
|
Svendsen SP, Svendsen CN. Cell therapy for neurological disorders. Nat Med 2024; 30:2756-2770. [PMID: 39407034 DOI: 10.1038/s41591-024-03281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/18/2024]
Abstract
Cell therapies for neurological disorders are entering the clinic and present unique challenges and opportunities compared with conventional medicines. They have the potential to replace damaged nervous tissue and integrate into the brain or spinal cord to produce functional effects for the lifetime of the patient, which could revolutionize the way clinicians treat debilitating neurological disorders. The major challenge has been cell sourcing, which historically relied mainly on fetal brain tissue. This has largely been overcome with the advent of pluripotent stem cell technology and the ability to make almost any cell of the nervous system at scale. Furthermore, advances in gene editing now allow the generation of genetically modified cells that could perform better and evade the immune system. With all the remarkable new approaches to treat neurological disorders, we take a critical look at the state of current clinical trials and how challenges may be overcome with the evolving technology and innovation occurring in the stem cell field.
Collapse
Affiliation(s)
- Soshana P Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - Clive N Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Marasini S, Jia X. Neuroprotective Approaches for Brain Injury After Cardiac Arrest: Current Trends and Prospective Avenues. J Stroke 2024; 26:203-230. [PMID: 38836269 PMCID: PMC11164592 DOI: 10.5853/jos.2023.04329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 06/06/2024] Open
Abstract
With the implementation of improved bystander cardiopulmonary resuscitation techniques and public-access defibrillation, survival after out-of-hospital cardiac arrest (OHCA) has increased significantly over the years. Nevertheless, OHCA survivors have residual anoxia/reperfusion brain damage and associated neurological impairment resulting in poor quality of life. Extracorporeal membrane oxygenation or targeted temperature management has proven effective in improving post-cardiac arrest (CA) neurological outcomes, yet considering the substantial healthcare costs and resources involved, there is an urgent need for alternative treatment strategies that are crucial to alleviate brain injury and promote recovery of neurological function after CA. In this review, we searched PubMed for the latest preclinical or clinical studies (2016-2023) utilizing gas-mediated, pharmacological, or stem cell-based neuroprotective approaches after CA. Preclinical studies utilizing various gases (nitric oxide, hydrogen, hydrogen sulfide, carbon monoxide, argon, and xenon), pharmacological agents targeting specific CA-related pathophysiology, and stem cells have shown promising results in rodent and porcine models of CA. Although inhaled gases and several pharmacological agents have entered clinical trials, most have failed to demonstrate therapeutic effects in CA patients. To date, stem cell therapies have not been reported in clinical trials for CA. A relatively small number of preclinical stem-cell studies with subtle therapeutic benefits and unelucidated mechanistic explanations warrant the need for further preclinical studies including the improvement of their therapeutic potential. The current state of the field is discussed and the exciting potential of stem-cell therapy to abate neurological dysfunction following CA is highlighted.
Collapse
Affiliation(s)
- Subash Marasini
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Peng Q, Zeng W. The protective role of endothelial GLUT1 in ischemic stroke. Brain Behav 2024; 14:e3536. [PMID: 38747733 PMCID: PMC11095318 DOI: 10.1002/brb3.3536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE To provide thorough insight on the protective role of endothelial glucose transporter 1 (GLUT1) in ischemic stroke. METHODS We comprehensively review the role of endothelial GLUT1 in ischemic stroke by narrating the findings concerning biological characteristics of GLUT1 in brain in depth, summarizing the changes of endothelial GLUT1 expression and activity during ischemic stroke, discussing how GLUT1 achieves its neuroprotective effect via maintaining endothelial function, and identifying some outstanding blind spots in current studies. RESULTS Endothelial GLUT1 maintains persistent high glucose and energy requirements of the brain by transporting glucose through the blood-brain barrier, which preserves endothelial function and is beneficial to stroke prognosis. CONCLUSION This review underscores the potential involvement of GLUT1 trafficking, activity modulation, and degradation, and we look forward to more clinical and animal studies to illuminate these mechanisms.
Collapse
Affiliation(s)
- Qiwei Peng
- Department of Critical Care Medicine, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology)Ministry of EducationWuhanChina
| | - Weiqi Zeng
- Department of NeurologyThe First People's Hospital of FoshanFoshanChina
| |
Collapse
|
6
|
Ikeda T, Kawabori M, Zheng Y, Yamaguchi S, Gotoh S, Nakahara Y, Yoshie E, Fujimura M. Intranasal Administration of Mesenchymal Stem Cell-Derived Exosome Alleviates Hypoxic-Ischemic Brain Injury. Pharmaceutics 2024; 16:446. [PMID: 38675108 PMCID: PMC11053690 DOI: 10.3390/pharmaceutics16040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxic-ischemic brain injury arises from inadequate oxygen delivery to the brain, commonly occurring following cardiac arrest, which lacks effective treatments. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells. Given the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a promising approach. In this study, we investigate the effects of intranasally administered exosomes in an animal model. Exosomes were isolated from the cell supernatants using the ultracentrifugation method. Brain injury was induced in Sprague-Dawley rats through a transient four-vessel occlusion model. Intranasal administration was conducted with 3 × 108 exosome particles in 20 µL of PBS or PBS alone, administered daily for 7 days post-injury. Long-term cognitive behavioral assessments, biodistribution of exosomes, and histological evaluations of apoptosis and neuroinflammation were conducted. Exosomes were primarily detected in the olfactory bulb one hour after intranasal administration, subsequently distributing to the striatum and midbrain. Rats treated with exosomes exhibited substantial improvement in cognitive function up to 28 days after the insult, and demonstrated significantly fewer apoptotic cells along with higher neuronal cell survival in the hippocampus. Exosomes were found to be taken up by microglia, leading to a decrease in the expression of cytotoxic inflammatory markers.
Collapse
Affiliation(s)
- Takuma Ikeda
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| | - Masahito Kawabori
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| | - Yuyuan Zheng
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| | - Sho Yamaguchi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka, Kobe 650-0047, Hyogo, Japan;
| | - Shuho Gotoh
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| | - Yo Nakahara
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| | - Erika Yoshie
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Hokkaido, Japan; (T.I.); (Y.Z.); (S.G.); (Y.N.); (E.Y.); (M.F.)
| |
Collapse
|
7
|
Darban YM, Askari H, Ghasemi-Kasman M, Yavarpour-Bali H, Dehpanah A, Gholizade P, Nosratiyan N. The Role of Induced Pluripotent Stem Cells in the Treatment of Stroke. Curr Neuropharmacol 2024; 22:2368-2383. [PMID: 39403058 PMCID: PMC11451314 DOI: 10.2174/1570159x22666240603084558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 10/19/2024] Open
Abstract
Stroke is a neurological disorder with high disability and mortality rates. Almost 80% of stroke cases are ischemic stroke, and the remaining are hemorrhagic stroke. The only approved treatment for ischemic stroke is thrombolysis and/or thrombectomy. However, these treatments cannot sufficiently relieve the disease outcome, and many patients remain disabled even after effective thrombolysis. Therefore, rehabilitative therapies are necessary to induce remodeling in the brain. Currently, stem cell transplantation, especially via the use of induced pluripotent stem cells (iPSCs), is considered a promising alternative therapy for stimulating neurogenesis and brain remodeling. iPSCs are generated from somatic cells by specific transcription factors. The biological functions of iPSCs are similar to those of embryonic stem cells (ESCs), including immunomodulation, reduced cerebral blood flow, cerebral edema, and autophagy. Although iPSC therapy plays a promising role in both hemorrhagic and ischemic stroke, its application is associated with certain limitations. Tumor formation, immune rejection, stem cell survival, and migration are some concerns associated with stem cell therapy. Therefore, cell-free therapy as an alternative method can overcome these limitations. This study reviews the therapeutic application of iPSCs in stroke models and the underlying mechanisms and constraints of these cells. Moreover, cell-free therapy using exosomes, apoptotic bodies, and microvesicles as alternative treatments is discussed.
Collapse
Affiliation(s)
| | - Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Amirabbas Dehpanah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Parnia Gholizade
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nasrin Nosratiyan
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|