1
|
Torres JL, Usategui-Martín R, Hernández-Cosido L, Bernardo E, Manzanedo-Bueno L, Hernández-García I, Mateos-Díaz AM, Rozo O, Matesanz N, Salete-Granado D, Chamorro AJ, Carbonell C, Garcia-Macia M, González-Sarmiento R, Sabio G, Muñoz-Bellvís L, Marcos M. PPAR-γ Gene Expression in Human Adipose Tissue Is Associated with Weight Loss After Sleeve Gastrectomy. J Gastrointest Surg 2022; 26:286-297. [PMID: 34882294 PMCID: PMC8821495 DOI: 10.1007/s11605-021-05216-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/25/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND The peroxisome proliferator-activated receptor (PPAR)-γ plays a key role in adipose tissue differentiation and fat metabolism. However, it is unclear which factors may regulate its expression and whether obese patients have changes in adipose tissue expression of PPAR-γor potential regulators such as miR-27. Thus, our aims were to analyze PPAR-γ and miR-27 expression in adipose tissue of obese patients, and to correlate their levels with clinical variables. SUBJECTS AND METHODS We included 43 morbidly obese subjects who underwent sleeve gastrectomy (31 of them completed 1-year follow-up) and 19 non-obese subjects. mRNA expression of PPAR-γ1 and PPAR-γ2, miR-27a, and miR-27b was measured by qPCR in visceral and subcutaneous adipose tissue. Clinical variables and serum adipokine and hormone levels were correlated with PPAR-γ and miR-27 expression. In addition, a systematic review of the literature regarding PPAR-γ expression in adipose tissue of obese patients was performed. RESULTS We found no differences in the expression of PPAR-γ and miR-27 in adipose tissue of obese patients vs. controls. The literature review revealed discrepant results regarding PPAR-γ expression in adipose tissue of obese patients. Of note, we described a significant negative correlation between pre-operative PPAR-γ1 expression in adipose tissue of obese patients and post-operative weight loss, potentially linked with insulin resistance markers. CONCLUSION PPAR-γ1 expression in adipose tissue is associated with weight loss after sleeve gastrectomy and may be used as a biomarker for response to surgery.
Collapse
Affiliation(s)
- Jorge-Luis Torres
- Department of Internal Medicine, University Hospital of Salamanca-SACYL-IBSAL, Salamanca, Spain ,Department of Internal Medicine, Complejo Asistencial de Zamora-SACYL, Zamora, Spain
| | - Ricardo Usategui-Martín
- IOBA, University of Valladolid, Valladolid, Spain ,Cooperative Health Network for Research (RETICS), Oftared, National Institute of Health Carlos III, ISCIII, Madrid, Spain
| | - Lourdes Hernández-Cosido
- Bariatric Surgery Unit, Department of General and Gastrointestinal Surgery, University Hospital of Salamanca, Salamanca, Spain ,University of Salamanca, Salamanca, Spain
| | - Edgar Bernardo
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Laura Manzanedo-Bueno
- Department of Internal Medicine, University Hospital of Salamanca-SACYL-IBSAL, Salamanca, Spain ,Department of Internal Medicine, Complejo Asistencial de Zamora-SACYL, Zamora, Spain
| | - Ignacio Hernández-García
- Department of Preventive Medicine and Public Health, Lozano Blesa University Clinical Hospital of Zaragoza, Zaragoza, Spain
| | - Ana-María Mateos-Díaz
- Department of Internal Medicine, University Hospital of Salamanca-SACYL-IBSAL, Salamanca, Spain
| | - Orlando Rozo
- Department of Surgery, Complejo Asistencial de Ávila-SACYL, Ávila, Spain
| | - Nuria Matesanz
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | | | - Antonio-Javier Chamorro
- Department of Internal Medicine, University Hospital of Salamanca-SACYL-IBSAL, Salamanca, Spain ,University of Salamanca, Salamanca, Spain
| | - Cristina Carbonell
- Department of Internal Medicine, University Hospital of Salamanca-SACYL-IBSAL, Salamanca, Spain ,University of Salamanca, Salamanca, Spain
| | - Marina Garcia-Macia
- Department of Internal Medicine, University Hospital of Salamanca-SACYL-IBSAL, Salamanca, Spain ,Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain ,Centro de Investigación Biomédica en Red Sobre Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Guadalupe Sabio
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Luis Muñoz-Bellvís
- Department of General and Gastrointestinal Surgery, Hospital Universitario de Salamanca, Biomedical Research Institute of Salamanca (IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-SACYL-IBSAL, Salamanca, Spain ,University of Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Ohkubo Y, Sekido T, Nishio SI, Sekido K, Kitahara J, Suzuki S, Komatsu M. Loss of μ-crystallin causes PPARγ activation and obesity in high-fat diet-fed mice. Biochem Biophys Res Commun 2018; 508:914-920. [PMID: 30545633 DOI: 10.1016/j.bbrc.2018.12.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022]
Abstract
The thyroid hormone-binding protein μ-crystallin (CRYM) mediates thyroid hormone action by sequestering triiodothyronine in the cytoplasm and regulating the intracellular concentration of thyroid hormone. As thyroid hormone action is closely associated with glycolipid metabolism, it has been proposed that CRYM may contribute to this process by reserving or releasing triiodothyronine in the cytoplasm. We aimed to clarify the relationship between CRYM and glycolipid metabolism by comparing wild-type and CRYM knockout mice fed a high-fat diet. Each group was provided a high-fat diet for 10 weeks, and then their body weight and fasting blood glucose levels were measured. Although no difference in body weight was observed between the two groups with normal diet, the treatment with a high-fat diet was found to induce obesity in the knockout mice. The knockout group displayed increased dietary intake, white adipose tissue, fat cell hypertrophy, and hyperglycemia in the intraperitoneal glucose tolerance test. In CRYM knockout mice, liver fat deposits were more pronounced than in the control group. Enhanced levels of PPARγ, which is known to cause fatty liver, and ACC1, which is a target gene for thyroid hormone and is involved in the fat synthesis, were also detected in the livers of CRYM knockout mice. These observations suggest that CRYM deficiency leads to obesity and lipogenesis, possibly in part through increasing the food intake of mice fed a high-fat diet.
Collapse
Affiliation(s)
- Yohsuke Ohkubo
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Takashi Sekido
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shin-Ichi Nishio
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan.
| | - Keiko Sekido
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Junichiro Kitahara
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Satoru Suzuki
- Department of Thyroid and Endocrinology, Division of Internal Medicine, School of Medicine, Fukushima Medical University Hospital, Fukushima, 960-1295, Japan
| | - Mitsuhisa Komatsu
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| |
Collapse
|
3
|
Serrano M, Moreno M, Ortega FJ, Xifra G, Ricart W, Moreno-Navarrete JM, Fernández-Real JM. Adipose tissue μ-crystallin is a thyroid hormone-binding protein associated with systemic insulin sensitivity. J Clin Endocrinol Metab 2014; 99:E2259-68. [PMID: 25057873 DOI: 10.1210/jc.2014-1327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Circulating thyroid hormones have been described to be intrinsically associated with insulin sensitivity in healthy subjects. μ-Crystallin is a nicotinamide adenine dinucleotide phosphate-dependent thyroid hormone-binding protein that has been shown to bind T3 in the cytoplasm. We aimed to study μ-Crystallin expression in adipose tissue and in muscle in association with insulin action and thyroid function. METHODS μ-Crystallin gene expression was studied in 81 visceral and 75 sc adipose tissue samples and in 26 muscle samples from a cohort of subjects with a wide spectrum of adiposity (cohort 1). μ-Crystallin was also evaluated in 30 morbidly obese subjects in whom insulin action was evaluated using euglycemic clamp (cohort 2) and in 22 sc adipose tissue samples obtained before and after bariatric surgery-induced weight loss (cohort 3). μ-Crystallin was also evaluated during differentiation of human adipocytes. μ-Crystallin was overexpressed in human sc adipocytes using lentiviruses. RESULTS μ-Crystallin gene expression was 2.6- to 3-fold higher in sc vs visceral adipose tissue in direct association with the expression of thyroid hormone receptor α 1 in cohort 1 and cohort 2. Visceral, but not sc, adipose tissue μ-Crystallin was positively associated with the serum T3/T4 ratio in cohort 1 and with insulin sensitivity in cohort 2. In fact, μ-Crystallin gene expression was significantly decreased in visceral adipose tissue (-43%) and in muscle (-26%) in subjects with impaired fasting glucose and type 2 diabetes. Weight loss did not result in significant sc adipose tissue μ-Crystallin changes. μ-Crystallin overexpression led to increased insulin-induced (Ser473)Akt phosphorylation in sc adipocytes. During differentiation of adipocytes, μ-Crystallin gene expression decreased in both visceral (P = .006) and sc (P = .003) adipocytes from obese subjects. CONCLUSION Visceral, but not sc, adipose tissue μ-Crystallin is an adipose tissue factor linked to parameters of thyroid hormone action (T3/T4 ratio) and might mediate the interaction of thyroid function and insulin sensitivity.
Collapse
Affiliation(s)
- Marta Serrano
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomèdica de Girona, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CB06/03/010), and Instituto de Salud Carlos III, 17007 Girona, Spain
| | | | | | | | | | | | | |
Collapse
|
4
|
Flajollet S, Staels B, Lefebvre P. Retinoids and nuclear retinoid receptors in white and brown adipose tissues: physiopathologic aspects. Horm Mol Biol Clin Investig 2013; 14:75-86. [DOI: 10.1515/hmbci-2013-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/06/2013] [Indexed: 01/30/2023]
Abstract
AbstractVitamin A, ingested either as retinol or β-carotene from animal- or plant-derived foods respectively, is a nutrient essential for many biological functions such as embryonic development, vision, immune response, tissue remodeling, and metabolism. Its main active metabolite is all
Collapse
|