1
|
Wiciński M, Kuźmiński O, Kujawa A, Słomko W, Fajkiel-Madajczyk A, Słupski M, Jóźwik A, Kubiak K, Otto SW, Malinowski B. Does Intense Endurance Workout Have an Impact on Serum Levels of Sex Hormones in Males? BIOLOGY 2023; 12:biology12040531. [PMID: 37106732 PMCID: PMC10136069 DOI: 10.3390/biology12040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The benefits of physical activity and sports are widely known and proved to be crucial for overall health and well-being. In this research, the authors decided to measure the impact of endurance training in a professional male rowing team on the serum concentration levels of testosterone, estradiol, sex hormone binding globulin (SHBG) and nitric oxide (NO) and apolipoprotein A1 (Apo-A1). Proper levels of the serum concentration are necessary in order to maintain physical effectiveness. Authors analyzed the data and reviewed the former conterminous articles to find the possible mechanisms leading to changes of serum concentration of certain hormones and molecules. The direct effect of physical activity was a decrease in testosterone serum concentration (from 7.12 ± 0.4 to 6.59 ± 0.35 (ng/mL)), sex hormone binding globulin serum concentration (from 39.50 ± 2.48 to 34.27 ± 2.33 (nmol/L)), nitric oxide serum concentration (from 440.21 ± 88.64 to 432 ± 91.89 (ng/mL)), increase in estradiol serum concentration (from 78.2 ± 11.21 to 83.01 ± 13.21 (pg/mL)) and no significant increase in Apo-A1 serum concentration (from 2.63 ± 0.2 to 2.69 ± 0.21 (mg/mL)). Low testosterone concentration in OTS may be a consequence of increased conversion to estradiol, because gonadotropic stimulation is maintained. Apo-A1 serum concentration was measured due to a strong connection with testosterone level and its possible impact of decreasing cardiovascular risk.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Oskar Kuźmiński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
- Correspondence:
| | - Artur Kujawa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Witold Słomko
- Department of Physioterapy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Maciej Słupski
- Department of Hepatobiliary and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Karol Kubiak
- Department of Obstetrics and Gynecology, St. Franziskus-Hospital, 48145 Münster, Germany
| | | | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| |
Collapse
|
2
|
Tian M, Wang YX, Wang X, Wang H, Liu L, Zhang J, Nan B, Shen H, Huang Q. Environmental doses of arsenic exposure are associated with increased reproductive-age male urinary hormone excretion and in vitro Leydig cell steroidogenesis. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124904. [PMID: 33385727 DOI: 10.1016/j.jhazmat.2020.124904] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/04/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Humans are ubiquitously exposed to arsenic from multiple sources, and chronic arsenic exposure may be associated with male reproductive health. Although association regarding arsenic exposure and sex hormone secretion in blood has been reported, sex hormone excretion in urine studies is lacking. Urinary sex hormone excretion has emerged as a complementary strategy to evaluate gonadal function. Herein, we determined the associations between environmental exposure to arsenic and urinary sex hormone elimination and in vitro Leydig cell steroidogenesis. Concentrations of arsenic and testosterone (T), estradiol (E2) and progesterone (P) in repeated urine samples were determined among 451 reproductive-age males. Moreover, an in vitro Leydig cell MLTC-1 steroidogenesis experiment was designed to simulate real-world scenarios of low human exposure. Multivariable linear regression models were used to assess the associations of urinary arsenic levels with urinary hormones. Urinary arsenic concentrations were positively associated with urinary sex hormone (T, E2, and P) levels. An in vitro test further demonstrated that a population-based environmental exposure range (0.01-5 μM) of arsenic induced Leydig cell steroidogenesis potency. Our results indicate that low-dose arsenic exposure exhibits an endocrine disrupting effect by stimulating Leydig cell steroidogenesis and accelerating urinary steroid excretion, which extends previous knowledge of the inverse association of high-dose arsenic exposure with sexual steroid production that is assumed to be anti-androgen.
Collapse
Affiliation(s)
- Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Xiaofei Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Bingru Nan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
3
|
Lindsay A, Costello JT. Realising the Potential of Urine and Saliva as Diagnostic Tools in Sport and Exercise Medicine. Sports Med 2018; 47:11-31. [PMID: 27294353 DOI: 10.1007/s40279-016-0558-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accurate monitoring of homeostatic perturbations following various psychophysiological stressors is essential in sports and exercise medicine. Various biomarkers are routinely used as monitoring tools in both clinical and elite sport settings. Blood collection and muscle biopsies, both invasive in nature, are considered the gold standard for the analysis of these biomarkers in exercise science. Exploring non-invasive methods of collecting and analysing biomarkers that are capable of providing accurate information regarding exercise-induced physiological and psychological stress is of obvious practical importance. This review describes the potential benefits, and the limitations, of using saliva and urine to ascertain biomarkers capable of identifying important stressors that are routinely encountered before, during, or after intense or unaccustomed exercise, competition, over-training, and inappropriate recovery. In particular, we focus on urinary and saliva biomarkers that have previously been used to monitor muscle damage, inflammation, cardiovascular stress, oxidative stress, hydration status, and brain distress. Evidence is provided from a range of empirical studies suggesting that urine and saliva are both capable of identifying various stressors. Although additional research regarding the efficacy of using urine and/or saliva to indicate the severity of exercise-induced psychophysiological stress is required, it is likely that these non-invasive biomarkers will represent "the future" in sports and exercise medicine.
Collapse
Affiliation(s)
- Angus Lindsay
- Program in Physical Therapy and Rehabilitation Sciences, School of Medicine, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| | - Joseph T Costello
- Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, Spinnaker Building, Cambridge Road, Portsmouth, PO1 2ER, UK
| |
Collapse
|
4
|
Kuuranne T, Saugy M, Baume N. Confounding factors and genetic polymorphism in the evaluation of individual steroid profiling. Br J Sports Med 2015; 48:848-55. [PMID: 24764553 PMCID: PMC4033181 DOI: 10.1136/bjsports-2014-093510] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the fight against doping, steroid profiling is a powerful tool to detect drug misuse with endogenous anabolic androgenic steroids. To establish sensitive and reliable models, the factors influencing profiling should be recognised. We performed an extensive literature review of the multiple factors that could influence the quantitative levels and ratios of endogenous steroids in urine matrix. For a comprehensive and scientific evaluation of the urinary steroid profile, it is necessary to define the target analytes as well as testosterone metabolism. The two main confounding factors, that is, endogenous and exogenous factors, are detailed to show the complex process of quantifying the steroid profile within WADA-accredited laboratories. Technical aspects are also discussed as they could have a significant impact on the steroid profile, and thus the steroid module of the athlete biological passport (ABP). The different factors impacting the major components of the steroid profile must be understood to ensure scientifically sound interpretation through the Bayesian model of the ABP. Not only should the statistical data be considered but also the experts in the field must be consulted for successful implementation of the steroidal module.
Collapse
Affiliation(s)
- Tiia Kuuranne
- Doping Control Laboratory, United Medix Laboratories Ltd., , Helsinki, Finland
| | | | | |
Collapse
|
5
|
Vaamonde D, Da Silva-Grigoletto M, Fernandez J, Algar-Santacruz C, García-Manso J. Findings on sperm alterations and DNA fragmentation, nutritional, hormonal and antioxidant status in an elite triathlete. Case report. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.ramd.2014.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Di Luigi L, Romanelli F, Sgrò P, Lenzi A. Andrological aspects of physical exercise and sport medicine. Endocrine 2012; 42:278-84. [PMID: 22430368 DOI: 10.1007/s12020-012-9655-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/06/2012] [Indexed: 12/21/2022]
Abstract
Appropriate physical activity is one of the bases of healthy lifestyle. In fact, physical exercise and playing sport may be associated with both improvements and injury to both general and reproductive health. A biologically normal testosterone secretion appears fundamental in males to guarantee both a physiological exercise adaptation and safe sport participation. The reproductive system is highly sensitive to the effects of exercise-related stress and the reproductive hormones may both increase and decrease after different acute or chronic exercises. Exercise and sport participation may positively or negatively influence andrological health status depending on the type, intensity and duration of performed physical activity and on individual health status. In addition, prohibited substances administration (e.g. androgenic-anabolic steroids, and so forth) in competitive and non-competitive athletes represents the main cause of iatrogenic andrological diseases. Preventing and treating andrological problems in active healthy and unhealthy individuals is as important as promoting a correct lifestyle. Physicians need to be educated on the relationships between the male reproductive system and sport participation and on the great role of the pre-participation physical examination in the prevention of andrological diseases.
Collapse
Affiliation(s)
- Luigi Di Luigi
- Unit of Endocrinology, Department of Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 15, 00135 Rome, Italy.
| | | | | | | |
Collapse
|
7
|
Timon R, Olcina G, Tomas-Carus P, Raimundo A, Maynar JI, Maynar M. Urinary endogenous steroids and their relationships with BMD and body composition in healthy young males. Endocrine 2012; 42:205-7. [PMID: 22246851 DOI: 10.1007/s12020-012-9604-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
|