1
|
Zhu M, Cao Z, Mo F, Shi S, Hu J, Xu Q, Quan K, Liang J, Li W, Hong X, Zhang B, Liu X, Dai M. ADRM1/RPN13 attenuates cartilage extracellular matrix degradation via enhancing UCH37-mediated ALK5 deubiquitination. Int J Biol Macromol 2023; 247:125670. [PMID: 37406898 DOI: 10.1016/j.ijbiomac.2023.125670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Osteoarthritis (OA) is the most common age-related joint disorder with no effective therapy, and its specific pathological mechanism remains to be fully clarified. Adhesion-regulating molecule 1 (ADRM1) has been proven to be involved in OA progression as a favorable gene. However, the exact mechanism of ADRM1 involved in OA were unknown. Here, we showed that the ADRM1 expression decreased in human OA cartilage, destabilization of the medial meniscus (DMM)-induced mouse OA cartilage, and interleukin (IL)-1β-induced primary mouse articular chondrocytes. Global knockout (KO) ADRM1 in cartilage or ADRM1 inhibitor (RA190) could accelerate the disorders of extracellular matrix (ECM) homeostasis, thereby accelerated DMM-induced cartilage degeneration, whereas overexpression of ADRM1 protected mice from DMM-induced OA development by maintaining the homeostasis of articular cartilage. The molecular mechanism study revealed that ADRM1 could upregulate ubiquitin carboxy-terminal hydrolase 37 (UCH37) expression and bind to UCH37 to activate its deubiquitination activity. Subsequently, increased and activated UCH37 enhanced activin receptor-like kinase 5 (ALK5) deubiquitination to stabilize ALK5 expression, thereby maintaining ECM homeostasis and attenuating cartilage degeneration. These findings indicated that ADRM1 could attenuate cartilage degeneration via enhancing UCH37-mediated ALK5 deubiquitination. Overexpression of ADRM1 in OA cartilage may provide a promising OA therapeutic strategy.
Collapse
Affiliation(s)
- Meisong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China.
| | - Zhiyou Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China.
| | - Fengbo Mo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China.
| | - Shoujie Shi
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China
| | - Jiawei Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China
| | - Qiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China
| | - Kun Quan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China
| | - Jianhui Liang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China
| | - Wei Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China
| | - Xin Hong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China.
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China.
| |
Collapse
|
2
|
Peng Y, Shi K, Wang L, Lu J, Li H, Pan S, Ma C. Characterization of Osterix protein stability and physiological role in osteoblast differentiation. PLoS One 2013; 8:e56451. [PMID: 23457570 PMCID: PMC3574093 DOI: 10.1371/journal.pone.0056451] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 12/12/2022] Open
Abstract
Osterix (Osx/SP7) is a C2H2 zinc finger-containing transcription factor of the SP gene family. Osx knockout mice indicate that the gene plays an essential role in osteoblast differentiation and bone formation. However, the mechanisms involved in the regulation of Osx are still poorly understood. Here, we report a novel post-translational mechanism for the regulation of Osx in mammalian cells. We found that the stability of endogenous and exogenous Osx reduced after cycloheximide treatment. In cells treated with the proteasome inhibitors MG-132 or lactacystin, both endogenous and exogenous Osx protein expression increased in a time-dependent manner. Co-immunoprecipitation (Co-IP) assays showed that both endogenous and exogenous Osx were ubiquitinated. Six lysine residues of Osx were identified as candidate ubiquitination sites by construction of point mutant plasmids and luciferase reporter assays. Furthermore, we confirmed that K58 and K230 are the ubiquitination sites of Osx by Co-IP assays and protein stability assays. Moreover, the Osx K58R and K230R mutations promoted the expression of osteoblast differentiation markers (alkaline phosphatase, collagen I and osteocalcin) and enhanced osteogenic differentiation in C2C12 cells. Taken together, our data indicate that Osx is an unstable protein, and that the ubiquitin-proteasome pathway is involved in the regulation of Osx and thereby regulates osteoblast differentiation.
Collapse
Affiliation(s)
- Yanyan Peng
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Kaikai Shi
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lintao Wang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianlei Lu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Hongwei Li
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
- National Key Clinical Department of Laboratory Medicine, Nanjing, People’s Republic of China
| | - Changyan Ma
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, People’s Republic of China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
3
|
Li FF, Chen FL, Wang H, Yu SB, Cui JH, Ding Y, Feng X. Proteomics based detection of differentially expressed proteins in human osteoblasts subjected to mechanical stress. Biochem Cell Biol 2012; 91:109-15. [PMID: 23527640 DOI: 10.1139/bcb-2012-0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mechanical stress is essential for bone development. Mechanical stimuli are transduced to biochemical signals that regulate proliferation, differentiation, and cytoskeletal reorganization in osteoblasts. In this study, we used proteomics to evaluate differences in the protein expression profiles of untreated Saos-2 osteoblast cells and Saos-2 cells subjected to mechanical stress loading. Using 2-D electrophoresis, MALDI-TOF mass spectroscopy, and bioinformatics, we identified a total of 26 proteins differentially expressed in stress loaded cells compared with control cells. Stress loaded Saos-2 cells exhibited significant upregulation of 17 proteins and significant downregulation of 9 proteins compared with control cells. Proteins that were most significantly upregulated in mechanically loaded cells included those regulating osteogenesis, energy metabolism, and the stress response, such as eukaryotic initiation factor 2 (12-fold), mitochondrial ATP synthase (8-fold), and peptidylprolyl isomerase A (cyclophilin A)-like 3 (6.5-fold). Among the proteins that were significantly downregulated were those involved in specific signaling pathways and cell proliferation, such as protein phosphatase regulatory (inhibitor) subunit 12B (13.8-fold), l-lactate dehydrogenase B (9.4-fold), Chain B proteasome activator Reg (Alpha) PA28 (7.7-fold), and ubiquitin carboxyl-terminal esterase L1 (6.9-fold). Our results provide a platform to understand the molecular mechanisms underlying mechanotransduction.
Collapse
Affiliation(s)
- Fei-Fei Li
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032 Shannxi Province, China
| | | | | | | | | | | | | |
Collapse
|