1
|
Zhang H, Zha X, Zheng Y, Liu X, Elsabagh M, Wang H, Jiang H, Wang M. Mechanisms underlying the role of endoplasmic reticulum stress in the placental injury and fetal growth restriction in an ovine gestation model. J Anim Sci Biotechnol 2023; 14:117. [PMID: 37691111 PMCID: PMC10494380 DOI: 10.1186/s40104-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Exposure to bisphenol A (BPA), an environmental pollutant known for its endocrine-disrupting properties, during gestation has been reported to increase the risk of fetal growth restriction (FGR) in an ovine model of pregnancy. We hypothesized that the FGR results from the BPA-induced insufficiency and barrier dysfunction of the placenta, oxidative stress, inflammatory responses, autophagy and endoplasmic reticulum stress (ERS). However, precise mechanisms underlying the BPA-induced placental dysfunction, and subsequently, FGR, as well as the potential involvement of placental ERS in these complications, remain to be investigated. METHODS In vivo experiment, 16 twin-pregnant (from d 40 to 130 of gestation) Hu ewes were randomly distributed into two groups (8 ewes each). One group served as a control and received corn oil once a day, whereas the other group received BPA (5 mg/kg/d as a subcutaneous injection). In vitro study, ovine trophoblast cells (OTCs) were exposed to 4 treatments, 6 replicates each. The OTCs were treated with 400 μmol/L BPA, 400 μmol/L BPA + 0.5 μg/mL tunicamycin (Tm; ERS activator), 400 μmol/L BPA + 1 μmol/L 4-phenyl butyric acid (4-PBA; ERS antagonist) and DMEM/F12 complete medium (control), for 24 h. RESULTS In vivo experiments, pregnant Hu ewes receiving the BPA from 40 to 130 days of pregnancy experienced a decrease in placental efficiency, progesterone (P4) level and fetal weight, and an increase in placental estrogen (E2) level, together with barrier dysfunctions, OS, inflammatory responses, autophagy and ERS in type A cotyledons. In vitro experiment, the OTCs exposed to BPA for 24 h showed an increase in the E2 level and related protein and gene expressions of autophagy, ERS, pro-apoptosis and inflammatory response, and a decrease in the P4 level and the related protein and gene expressions of antioxidant, anti-apoptosis and barrier function. Moreover, treating the OTCs with Tm aggravated BPA-induced dysfunction of barrier and endocrine (the increased E2 level and decreased P4 level), OS, inflammatory responses, autophagy, and ERS. However, treating the OTCs with 4-PBA reversed the counteracted effects of Tm mentioned above. CONCLUSIONS In general, the results reveal that BPA exposure can cause ERS in the ovine placenta and OTCs, and ERS induction might aggravate BPA-induced dysfunction of the placental barrier and endocrine, OS, inflammatory responses, and autophagy. These data offer novel mechanistic insights into whether ERS is involved in BPA-mediated placental dysfunction and fetal development.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Honghua Jiang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, 832000, China.
| |
Collapse
|
2
|
Zhao Y, Jiang C, Lu J, Sun Y, Cui Y. Research progress of proanthocyanidins and anthocyanidins. Phytother Res 2023; 37:2552-2577. [PMID: 37118988 DOI: 10.1002/ptr.7850] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/30/2023]
Abstract
Proanthocyanidins (PA) are polyphenol compounds that are widely distributed in the bark, fruit core, skin, or seeds of various plants. Anthocyanidins are water-soluble natural pigments widely found in plants. They are all flavonoids, a major coloring substance in plants and fruits. In recent years, research into PA and anthocyanins has become increasingly popular because of their excellent anti-oxidation, scavenging of reactive oxygen free radicals and other physical and chemical activities, and their anti-cancer, vision protection, aging prevention, skin beauty pharmacological, and nutraceutical effects. Especially, recent systematic reviews and meta-analyses indicate their value, safety, and efficacy in the prevention, adjuvant therapy, and management of cardiometabolic disease. Here, we summarize their research progress from the aspects of chemical structure, biosynthetic pathways, distribution, extraction and separation, coloration, efficacy, and potential. The comparison between them might provide a reference for their development and efficient utilization. However, more large-sample-size randomized controlled trials and high-quality studies are needed to firmly establish their clinical efficacy.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, China
| | - Chengqing Jiang
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, China
| | - Jiaying Lu
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, China
| | - Yihan Sun
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, China
| | - Yingyu Cui
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China (Tongji University), Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Kan HL, Wang CC, Cheng YH, Yang CL, Chang HS, Chen IS, Lin YC. Cinnamtannin B1 attenuates rosacea-like signs via inhibition of pro-inflammatory cytokine production and down-regulation of the MAPK pathway. PeerJ 2020; 8:e10548. [PMID: 33391878 PMCID: PMC7759128 DOI: 10.7717/peerj.10548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Background Rosacea is a common inflammatory disease of facial skin. Dysregulation of innate immunity with enhanced inflammation and increased abundance of LL-37 at the epidermal site is a characteristic feature of rosacea. Cinnamtannin B1 (CB1) is a condensed tannin with anti-inflammatory and anti-microbial activities. The aims of the study were to evaluate the potential of CB1 as a therapy for rosacea and to characterize the potential mechanisms of action. Methods We intraperitoneally administered 20 mg/kg CB1 once daily for 2 days into the LL-37-induced mouse model of rosacea. The effects of CB1 in vivo were evaluated by the observations of lesions, histology, immunohistochemistry, and the transcription and translation of pro-inflammatory cytokines and chemokines. Human keratinocyte HaCaT and monocyte THP-1 were used to characterize the effects of CB1 on LL-37-induced inflammation in vitro. The changes in pro-inflammatory chemokine interleukin-8 (IL-8) were quantitated by enzyme-linked immunosorbent assay (ELISA), and the expressions of genes involved were determined by Western blotting. Results CB1 attenuated local redness, inflammation, and neutrophil recruitment in the mouse model of rosacea in vivo. CB1 suppressed myeloperoxidase (MPO) and macrophage inflammatory protein 2 (MIP-2) production, a functional homolog of interleukin-8 (IL-8), at the lesions. In vitro experiments confirmed that CB1 reversed the LL-37-induced IL-8 production in human keratinocytes HaCaT and monocyte THP-1 cells. CB1 inhibited IL-8 production through downregulating the phosphorylation of extracellular signal-regulated kinase (ERK) in the mitogen-activated protein kinase (MAPK) pathway. Conclusion CB1 attenuated LL-37-induced inflammation, specifically IL-8 production, through inhibiting the phosphorylation of ERK. CB1 has potential as a treatment for rosacea.
Collapse
Affiliation(s)
- Hung-Lin Kan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Chi Wang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Hua Cheng
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Lung Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Chi Lin
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Estaras M, Marchena AM, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces the activation of cellular stress responses and decreases viability of rat pancreatic stellate cells. J Appl Toxicol 2020; 40:1554-1565. [PMID: 32567733 DOI: 10.1002/jat.4018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
In this study, we have examined the effects of luzindole, a melatonin receptor-antagonist, on cultured pancreatic stellate cells. Intracellular free-Ca2+ concentration, production of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPK), endoplasmic reticulum stress and cell viability were analyzed. Stimulation of cells with the luzindole (1, 5, 10 and 50 μm) evoked a slow and progressive increase in intracellular free Ca2+ ([Ca2+ ]i ) towards a plateau. The effect of the compound on Ca2+ mobilization depended on the concentration used. Incubation of cells with the sarcoendoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin (1 μm), in the absence of Ca2+ in the extracellular medium, induced a transient increase in [Ca2+ ]i . In the presence of thapsigargin, the addition of luzindole to the cells failed to induce further mobilization of Ca2+ . Luzindole induced a concentration-dependent increase in ROS generation, both in the cytosol and in the mitochondria. This effect was smaller in the absence of extracellular Ca2+ . In the presence of luzindole the phosphorylation of p44/42 and p38 MAPKs was increased, whereas no changes in the phosphorylation of JNK could be noted. Moreover, the detection of the endoplasmic reticulum stress-sensor BiP was increased in the presence of luzindole. Finally, viability was decreased in cells treated with luzindole. Because cellular membrane receptors for melatonin have not been detected in pancreatic stellate cells, we conclude that luzindole could exert direct effects that are not mediated through its action on melatonin membrane receptors.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Ana M Marchena
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
5
|
Estaras M, Ameur FZ, Estévez M, Díaz-Velasco S, Gonzalez A. The lysine derivative aminoadipic acid, a biomarker of protein oxidation and diabetes-risk, induces production of reactive oxygen species and impairs trypsin secretion in mouse pancreatic acinar cells. Food Chem Toxicol 2020; 145:111594. [PMID: 32738373 DOI: 10.1016/j.fct.2020.111594] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
We have examined the effects of α-aminoadipic acid, an oxidized derivative from the amino acid lysine, on the physiology of mouse pancreatic acinar cells. Changes in intracellular free-Ca2+ concentration, the generation of reactive oxygen species, the levels of carbonyls and thiobarbituric-reactive substances, cellular metabolic activity and trypsin secretion were studied. Stimulation of mouse pancreatic cells with cholecystokinin (1 nM) evoked a transient increase in [Ca2+]i. In the presence of α-amoniadipic acid increases in [Ca2+]i were observed. In the presence of the compound, cholecystokinin induced a Ca2+ response that was smaller compared with that observed when cholecystokinin was applied alone. Stimulation of cells with cholecystokinin in the absence of Ca2+ in the extracellular medium abolished further mobilization of Ca2+ by α-aminoadipic acid. In addition, potential pro-oxidant conditions, reflected as increases in ROS generation, oxidation of proteins and lipids, were noted in the presence of α-aminoadipic acid. Finally, the compound impaired trypsin secretion induced by the secretagogue cholecystokinin. We conclude that the oxidized derivative from the amino acid lysine induces pro-oxidative conditions and the impairment of enzyme secretion in pancreatic acinar cells. α-aminoadipic acid thus creates a situation that could potentially lead to disorders in the physiology of the pancreas.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Fatma Z Ameur
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d'Oran1 Ahmed BenBella, Algeria
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Silvia Díaz-Velasco
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
6
|
Veres-Székely A, Bernáth M, Pap D, Rokonay R, Szebeni B, Takács IM, Lippai R, Cseh Á, Szabó AJ, Vannay Á. PARK7 Diminishes Oxidative Stress-Induced Mucosal Damage in Celiac Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4787202. [PMID: 32963695 PMCID: PMC7492931 DOI: 10.1155/2020/4787202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Coeliac disease (CD) is a chronic, immune-mediated small intestinal enteropathy, accompanied with gluten-triggered oxidative damage of duodenal mucosa. Previously, our research group reported an increased mucosal level of the antioxidant protein Parkinson's disease 7 (PARK7) in children with CD. In the present study, we investigated the role of increased PARK7 level on the epithelial cell and mucosal integrity of the small intestine. The presence of PARK7 was investigated using immunofluorescent staining on duodenal mucosa of children with CD and on FHs74Int duodenal epithelial cells. To investigate the role of oxidative stress, FHs74Int cells were treated with H2O2 in the absence or presence of Comp23, a PARK7-binding compound. Intracellular accumulation of reactive oxygen species (ROS) was determined by DCFDA-based assay. Cell viability was measured by MTT, LDH, and Annexin V apoptosis assays. Disruption of cytoskeleton and cell adhesion was investigated by immunofluorescence staining and by real-time RT PCR. Effect of PARK7 on mucosal permeability was investigated ex vivo using intestinal sacs derived from control and Comp-23-pretreated mice. Comp23 treatment reduced the H2O2-induced intracellular accumulation of ROS, thus preserving the integrity of the cytoskeleton and also the viability of the FHs74Int cells. Accordingly, Comp23 treatment increased the expression of antioxidants (NRF2, TRX1, GCLC, HMOX1, NQO1), cell-cycle regulators (TP53, CDKN1A, PCNA, BCL2, BAX), and cell adhesion molecules (ZO1, CDH1, VCL, ITGB5) of H2O2-treated cells. Pretreatment with Comp23 considerably decreased the small intestinal permeability. In this study, we demonstrate that PARK7-binding Comp23 reduces the oxidative damage of duodenal epithelial cells, via increased expression of NRF2- and P53-regulated genes. Our results suggest that PARK7 plays a significant role in the maintenance of mucosal integrity in CD.
Collapse
Affiliation(s)
- Apor Veres-Székely
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
| | - Mária Bernáth
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
| | - Domonkos Pap
- MTA-SE Pediatrics and Nephrology Research Group, 1085 Budapest, Hungary
| | - Réka Rokonay
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
| | - Beáta Szebeni
- MTA-SE Pediatrics and Nephrology Research Group, 1085 Budapest, Hungary
| | - István M. Takács
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
| | - Rita Lippai
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
| | - Áron Cseh
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
| | - Attila J. Szabó
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Pediatrics and Nephrology Research Group, 1085 Budapest, Hungary
| | - Ádám Vannay
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Pediatrics and Nephrology Research Group, 1085 Budapest, Hungary
| |
Collapse
|
7
|
Estaras M, Ameur FZ, Roncero V, Fernandez-Bermejo M, Blanco G, Lopez D, Mateos JM, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces Ca 2+ mobilization, reactive oxygen species generation and impairs trypsin secretion in mouse pancreatic acinar cells. Biochim Biophys Acta Gen Subj 2019; 1863:129407. [PMID: 31381958 DOI: 10.1016/j.bbagen.2019.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND In this work we studied the effects of the melatonin receptor-antagonist luzindole (1 μM-50 μM) on isolated mouse pancreatic acinar cells. METHODS Changes in intracellular free-Ca2+ concentration, reactive oxygen species production and trypsin secretion were analyzed. RESULTS Luzindole induced increases in [Ca2+]i that diminished CCK-8 induced Ca2+ mobilization, compared with that observed when CCK-8 was applied alone. Treatment of cells with thapsigargin (1 μM), in the absence of Ca2+ in the extracellular medium, evoked a transient increase in [Ca2+]i. The additional incubation of cells with luzindole (10 μM) failed to induce further mobilization of Ca2+. In the presence of luzindole a concentration-dependent increase in ROS generation was observed that decreased in the absence of Ca2+ or by pretreatment of cells with melatonin (100 μM). Incubation of pancreatic acinar cells with luzindole (10 μM) impaired CCK-8-induced trypsin secretion. Melatonin was unable to revert the effect of luzindole on CCK-8-induced trypsin secretion. CONCLUSION The melatonin receptor-inhibitor luzindole induces Ca2+-mediated pro-oxidative conditions and impairment of enzyme secretion, which creates a situation in pancreatic acinar cells that might compromise their function. GENERAL SIGNIFICANCE The effects of luzindole that we have observed, might be unspecific and could mislead the observations when it is used to study the actions of melatonin on the gland. Another possibility is that melatonin receptors exhibit a basal or agonist-independent activity in pancreatic acinar cells, which might be modulated by melatonin or luzindole.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Fatma Z Ameur
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d'Oran1, Ahmed BenBella, Algeria
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | | | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| |
Collapse
|
8
|
Effectiveness and therapeutic value of phytochemicals in acute pancreatitis: A review. Pancreatology 2019; 19:481-487. [PMID: 31079933 DOI: 10.1016/j.pan.2019.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/25/2019] [Accepted: 04/21/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disorder of the pancreas that can lead to local and systemic complications. Repeated attacks of AP can lead to chronic pancreatitis, which markedly increases the probability of developing pancreatic cancer. Although many researchers have attempted to identify the pathogenesis involved in the initiation and aggravation of AP, the disease is still not fully understood, and effective treatment is limited to supportive therapy. METHODS We aim to summarize available literature focused on phytochemicals (berberine, chlorogenic acid, curcumin, emblica officinalis, ellagic acid, cinnamtannin B-1, resveratrol, piperine and lycopene) and discuss their effectiveness and therapeutic value for improving AP. RESULTS This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect databases. CONCLUSIONS Many phytochemicals hold potential in improving AP symptoms and may be a valuable and effective addition to standard treatment of AP. It has already been proven that the crucial factor for reducing the severity of AP is stimulation of apoptosis along with/or inhibition of necrosis. Supplementation of phytochemicals, which target the balance between apoptosis and necrosis can be recommended in ongoing clinical studies.
Collapse
|
9
|
Ameur FZ, Mehedi N, Kheroua O, Saïdi D, Salido GM, Gonzalez A. Sulfanilic acid increases intracellular free-calcium concentration, induces reactive oxygen species production and impairs trypsin secretion in pancreatic AR42J cells. Food Chem Toxicol 2018; 120:71-80. [PMID: 29986830 DOI: 10.1016/j.fct.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/09/2018] [Accepted: 07/01/2018] [Indexed: 12/12/2022]
Abstract
We studied the effects of the tartrazine-metabolite sulfanilic acid on the physiology of pancreatic AR42J cells. Sulfanilic acid (1 μM-1 mM) induced a slow and progressive increase in intracellular free-calcium concentration that reached a plateau. The effect of sulfanilic acid was not concentration-dependent. Stimulation of cells with thapsigargin (1 μM) after treatment with sulfanilic acid (1 mM) induced a smaller Ca2+ response compared with that obtained with thapsigargin alone. Sulfanilic acid induced a concentration-dependent production of reactive oxygen species; however, this effect was not Ca2+-dependent. Depolarization of mitochondrial membrane potential was observed at the concentration of 1 mM sulfanilic acid. In the presence of the compound a decrease in the GSH/GSSG ratio was observed. A decrease in the expression of superoxide dismutase 2 was noted. Finally, stimulation of cells with CCK-8 led to a concentration-dependent increase of trypsin secretion that was impaired by pretreatment of cells with sulfanilic acid. Preincubation of cells with the antioxidant melatonin (100 μM) reduced the effect of sulfanilic acid on trypsin secretion. We conclude that sulfanilic acid might induce oxidative stress, which could alter Ca2+ signaling and enzyme secretion in pancreatic AR42J cells. This creates a situation potentially leading to damage of the exocrine pancreas.
Collapse
Affiliation(s)
- Fatma Zohra Ameur
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain; Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Nabila Mehedi
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Omar Kheroua
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Djamel Saïdi
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| |
Collapse
|
10
|
Woo KW, Jung JK, Lee HJ, Kim TM, Kim MS, Jung HK, An B, Ham SH, Jeon BH, Cho HW. Phytochemical Constituents from the Rhizomes ofOsmunda japonicaThunb and Their Anti-oxidant Activity. ACTA ACUST UNITED AC 2017. [DOI: 10.20307/nps.2017.23.3.217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kyeong wan Woo
- Traditional Korean Medicine Research Team, National Development Institute of Korea Medicine, 288, Woodlandgil, Anyangmyeon, Jangheunggun, Jeollanamdo 59338, Republic of Korea
| | - Ja Kyun Jung
- Traditional Korean Medicine Research Team, National Development Institute of Korea Medicine, 288, Woodlandgil, Anyangmyeon, Jangheunggun, Jeollanamdo 59338, Republic of Korea
| | - Hyun Joo Lee
- Traditional Korean Medicine Research Team, National Development Institute of Korea Medicine, 288, Woodlandgil, Anyangmyeon, Jangheunggun, Jeollanamdo 59338, Republic of Korea
| | - Tae Muk Kim
- Traditional Korean Medicine Research Team, National Development Institute of Korea Medicine, 288, Woodlandgil, Anyangmyeon, Jangheunggun, Jeollanamdo 59338, Republic of Korea
| | - Min Suk Kim
- Traditional Korean Medicine Research Team, National Development Institute of Korea Medicine, 288, Woodlandgil, Anyangmyeon, Jangheunggun, Jeollanamdo 59338, Republic of Korea
- Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Ho Kyung Jung
- Traditional Korean Medicine Research Team, National Development Institute of Korea Medicine, 288, Woodlandgil, Anyangmyeon, Jangheunggun, Jeollanamdo 59338, Republic of Korea
| | - Byeongkwan An
- Traditional Korean Medicine Research Team, National Development Institute of Korea Medicine, 288, Woodlandgil, Anyangmyeon, Jangheunggun, Jeollanamdo 59338, Republic of Korea
| | - Seong Ho Ham
- Traditional Korean Medicine Research Team, National Development Institute of Korea Medicine, 288, Woodlandgil, Anyangmyeon, Jangheunggun, Jeollanamdo 59338, Republic of Korea
| | - Byung Hun Jeon
- Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Hyun Woo Cho
- Traditional Korean Medicine Research Team, National Development Institute of Korea Medicine, 288, Woodlandgil, Anyangmyeon, Jangheunggun, Jeollanamdo 59338, Republic of Korea
| |
Collapse
|
11
|
Kamendulis LM, Wu Q, Sandusky GE, Hocevar BA. Perfluorooctanoic acid exposure triggers oxidative stress in the mouse pancreas. Toxicol Rep 2014; 1:513-521. [PMID: 28962265 PMCID: PMC5598264 DOI: 10.1016/j.toxrep.2014.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/09/2014] [Accepted: 07/23/2014] [Indexed: 01/09/2023] Open
Abstract
PFOA triggers focal ductal hyperplasia following 7 day exposure. PFOA exposure increases 8-iso-PGF2α levels in the pancreas. Antioxidant gene expression is upregulated in the pancreas following PFOA exposure.
Perfluorooctanoic acid (PFOA) is used in the manufacture of many industrial and commercial products. PFOA does not readily decompose in the environment, and is biologically persistent. Human epidemiologic and animal studies suggest that PFOA exposure elicits adverse effects on the pancreas. While multiple animal studies have examined PFOA-mediated toxicity in the liver, little is known about the potential adverse effects of PFOA on the pancreas. To address this, we treated C57Bl/6 mice with vehicle, or PFOA at doses of 0.5, 2.5 or 5.0 mg/kg BW/day for 7 days. Significant accumulation of PFOA was found in the serum, liver and pancreas of PFOA-treated animals. Histopathologic examination of the pancreas revealed focal ductal hyperplasia in mice treated with 2.5 and 5.0 mg/kg BW/day PFOA, while inflammation was observed only in the high dose group. Elevated serum levels of amylase and lipase were observed in the 2.5 mg/kg BW/day PFOA treatment group. In addition, PFOA exposure resulted in a dose-dependent increase in the level of the lipid peroxidation product 8-iso-PGF2α and induction of the antioxidant response genes Sod1, Sod2, Gpx2 and Nqo1. Our findings provide additional evidence that the pancreas is a target organ for PFOA-mediated toxicity and suggest that oxidative stress may be a mechanism through which PFOA induces histopathological changes in the pancreas.
Collapse
Affiliation(s)
- Lisa M Kamendulis
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| | - Qiangen Wu
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| | - George E Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Barbara A Hocevar
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| |
Collapse
|
12
|
Wang T, Sun P, Chen L, Huang Q, Chen K, Jia Q, Li Y, Wang H. Cinnamtannin D-1 protects pancreatic β-cells from palmitic acid-induced apoptosis by attenuating oxidative stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5038-5045. [PMID: 24815044 DOI: 10.1021/jf500387d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In previous studies, A-type procyanidin oligomers isolated from Cinnamomum tamala were proved to possess antidiabetic effect and protect pancreatic β-cells in vivo. The aim of this study was to unveil the mechanisms of protecting pancreatic β-cells from palmitic acid-induced apoptosis by cinnamtannin D-1 (CD1), one of the main A-type procyanidin oligomers in C. tamala. CD1 was discovered to dose-dependently reduce palmitic acid- or H2O2-induced apoptosis and oxidative stress in INS-1 cells, MIN6 cells, and primary cultured murine islets. Moreover, CD1 could reverse palmitic acid-induced dysfunction of glucose-stimulated insulin secretion in primary cultured islets. These results indicate that reduction of apoptosis and oxidative stress might account for the protection effect of CD1, which provided a better understanding of the mechanisms of the antidiabetic effects of procyanidin oligomers.
Collapse
Affiliation(s)
- Ting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chi Z, Ma X, Cui G, Li M, Li F. Cinnamtannin B-1 regulates cell proliferation of spinal cord astrocytes and protects the cell from oxygen-glucose-serum deprivation/reoxygenation-induced apoptosis. Int J Mol Sci 2013; 14:15827-37. [PMID: 23903044 PMCID: PMC3759888 DOI: 10.3390/ijms140815827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 01/08/2023] Open
Abstract
Astrocytes are important for protecting neurons in the central nervous system. It has been reported that some antioxidants could protect astrocytes from ischemia/reperfusion-induced dysfunction. Cinnamtannin B-1 is a naturally occurring A-type proanthocyanidin that exhibits anti-oxidant properties. In this study, we investigated the effects of cinnamtannin B-1 on spinal cord astrocytes. Astrocytes were subjected to oxygen-glucose-serum deprivation for eight hours followed by reoxygenation with or without cinnamtannin B-1. We found that cinnamtannin B-1 protected astrocytes from oxygen-glucose-serum deprivation and reoxygenation-induced apoptosis. Concurrently, cinnamtannin B-1 promoted the proliferation of astrocytes whereas the extracellular regulated protein kinase (ERK) inhibitor reversed this effect. The results indicated that cinnamtannin B-1 protects astrocytes from oxygen-glucose-serum deprivation/reoxygenation-induced apoptosis by promoting astrocyte proliferation via an ERK pathway. Therefore, as an anti-oxidant, cinnamtannin B-1 might provide extra benefit for astrocyte protection during ischemia/reperfusion in the central nervous system.
Collapse
Affiliation(s)
- Zhiyong Chi
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, NO.23 Youzheng St., Nangang District, Harbin 150001, China; E-Mails: (Z.C.); (G.C.); (M.L.)
| | - Xueling Ma
- Department of Neurology, the Fourth Affiliated Hospital of Harbin Medical University, NO.37 Yiyuan Road, Nangang District, Harbin 150001, China; E-Mail:
| | - Guofeng Cui
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, NO.23 Youzheng St., Nangang District, Harbin 150001, China; E-Mails: (Z.C.); (G.C.); (M.L.)
| | - Mingchao Li
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, NO.23 Youzheng St., Nangang District, Harbin 150001, China; E-Mails: (Z.C.); (G.C.); (M.L.)
| | - Fuchun Li
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, NO.23 Youzheng St., Nangang District, Harbin 150001, China; E-Mails: (Z.C.); (G.C.); (M.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-451-5364-3849
| |
Collapse
|