1
|
Ben Soussia I, El Mouridi S, Kang D, Leclercq-Blondel A, Khoubza L, Tardy P, Zariohi N, Gendrel M, Lesage F, Kim EJ, Bichet D, Andrini O, Boulin T. Mutation of a single residue promotes gating of vertebrate and invertebrate two-pore domain potassium channels. Nat Commun 2019; 10:787. [PMID: 30770809 PMCID: PMC6377628 DOI: 10.1038/s41467-019-08710-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/23/2019] [Indexed: 01/28/2023] Open
Abstract
Mutations that modulate the activity of ion channels are essential tools to understand the biophysical determinants that control their gating. Here, we reveal the conserved role played by a single amino acid position (TM2.6) located in the second transmembrane domain of two-pore domain potassium (K2P) channels. Mutations of TM2.6 to aspartate or asparagine increase channel activity for all vertebrate K2P channels. Using two-electrode voltage-clamp and single-channel recording techniques, we find that mutation of TM2.6 promotes channel gating via the selectivity filter gate and increases single channel open probability. Furthermore, channel gating can be progressively tuned by using different amino acid substitutions. Finally, we show that the role of TM2.6 was conserved during evolution by rationally designing gain-of-function mutations in four Caenorhabditis elegans K2P channels using CRISPR/Cas9 gene editing. This study thus describes a simple and powerful strategy to systematically manipulate the activity of an entire family of potassium channels. Mutations that modulate the activity of ion channels are essential tools to understand the biophysical determinants that control their gating. Here authors reveal the role played by a single residue in the second transmembrane domain of vertebrate and invertebrate two-pore domain potassium channels.
Collapse
Affiliation(s)
- Ismail Ben Soussia
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France
| | - Sonia El Mouridi
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France
| | - Dawon Kang
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, South Korea
| | - Alice Leclercq-Blondel
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France
| | - Lamyaa Khoubza
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, CNRS UMR 7275, Université de Nice Sophia Antipolis, Valbonne, 06560, France
| | - Philippe Tardy
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France
| | - Nora Zariohi
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France
| | - Marie Gendrel
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France
| | - Florian Lesage
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, CNRS UMR 7275, Université de Nice Sophia Antipolis, Valbonne, 06560, France
| | - Eun-Jin Kim
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, South Korea
| | - Delphine Bichet
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, CNRS UMR 7275, Université de Nice Sophia Antipolis, Valbonne, 06560, France
| | - Olga Andrini
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France.
| | - Thomas Boulin
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France.
| |
Collapse
|
2
|
Zhuo RG, Peng P, Liu XY, Yan HT, Xu JP, Zheng JQ, Wei XL, Ma XY. Intersubunit Concerted Cooperative and cis-Type Mechanisms Modulate Allosteric Gating in Two-Pore-Domain Potassium Channel TREK-2. Front Cell Neurosci 2016; 10:127. [PMID: 27242438 PMCID: PMC4865513 DOI: 10.3389/fncel.2016.00127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/29/2016] [Indexed: 01/01/2023] Open
Abstract
In response to diverse stimuli, two-pore-domain potassium channel TREK-2 regulates cellular excitability, and hence plays a key role in mediating neuropathic pain, mood disorders and ischemia through. Although more and more input modalities are found to achieve their modulations via acting on the channel, the potential role of subunit interaction in these modulations remains to be explored. In the current study, the deletion (lack of proximal C-terminus, ΔpCt) or point mutation (G312A) was introduced into TREK-2 subunits to limit K+ conductance and used to report subunit stoichiometry. The constructs were then combined with wild type (WT) subunit to produce concatenated dimers with defined composition, and the gating kinetics of these channels to 2-Aminoethoxydiphenyl borate (2-APB) and extracellular pH (pHo) were characterized. Our results show that combination of WT and ΔpCt/G312A subunits reserves similar gating properties to that of WT dimmers, suggesting that the WT subunit exerts dominant and positive effects on the mutated one, and thus the two subunits controls channel gating via a concerted cooperative manner. Further introduction of ΔpCt into the latter subunit of heterodimeric channel G312A-WT or G312A-G312A attenuated their sensitivity to 2-APB and pHo alkalization, implicating that these signals were transduced by a cis-type mechanism. Together, our findings elucidate the mechanisms for how the two subunits control the pore gating of TREK-2, in which both intersubunit concerted cooperative and cis-type manners modulate the allosteric regulations induced by 2-APB and pHo alkalization.
Collapse
Affiliation(s)
- Ren-Gong Zhuo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Peng Peng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and ToxicologyBeijing, China; Anesthesia and Operation Center, PLA General HospitalBeijing, China
| | - Xiao-Yan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Hai-Tao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Jiang-Ping Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Southern Medical University Guangzhou, China
| | - Jian-Quan Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiao-Li Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiao-Yun Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| |
Collapse
|
3
|
Leenen FAD, Vernocchi S, Hunewald OE, Schmitz S, Molitor AM, Muller CP, Turner JD. Where does transcription start? 5'-RACE adapted to next-generation sequencing. Nucleic Acids Res 2016; 44:2628-45. [PMID: 26615195 PMCID: PMC4824077 DOI: 10.1093/nar/gkv1328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 01/27/2023] Open
Abstract
The variability and complexity of the transcription initiation process was examined by adapting RNA ligase-mediated rapid amplification of 5' cDNA ends (5'-RACE) to Next-Generation Sequencing (NGS). We oligo-labelled 5'-m(7)G-capped mRNA from two genes, the simple mono-exonic Beta-2-Adrenoceptor (ADRB2R)and the complex multi-exonic Glucocorticoid Receptor (GR, NR3C1), and detected a variability in TSS location that has received little attention up to now. Transcription was not initiated at a fixed TSS, but from loci of 4 to 10 adjacent nucleotides. Individual TSSs had frequencies from <0.001% to 38.5% of the total gene-specific 5' m(7)G-capped transcripts. ADRB2R used a single locus consisting of 4 adjacent TSSs. Unstimulated, the GR used a total of 358 TSSs distributed throughout 38 loci, that were principally in the 5' UTRs and were spliced using established donor and acceptor sites. Complete demethylation of the epigenetically sensitive GR promoter with 5-azacytidine induced one new locus and 127 TSSs, 12 of which were unique. We induced GR transcription with dexamethasone and Interferon-γ, adding one new locus and 185 additional TSSs distributed throughout the promoter region. In-vitro the TSS microvariability regulated mRNA translation efficiency and the relative abundance of the different GRN-terminal protein isoform levels.
Collapse
Affiliation(s)
- Fleur A D Leenen
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette L-4354, Grand-Duchy of Luxembourg Department of Immunology, Research Institute of Psychobiology, University of Trier, Trier D-54290, Germany
| | - Sara Vernocchi
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette L-4354, Grand-Duchy of Luxembourg Department of Immunology, Research Institute of Psychobiology, University of Trier, Trier D-54290, Germany
| | - Oliver E Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette L-4354, Grand-Duchy of Luxembourg
| | - Stephanie Schmitz
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette L-4354, Grand-Duchy of Luxembourg
| | - Anne M Molitor
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette L-4354, Grand-Duchy of Luxembourg
| | - Claude P Muller
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette L-4354, Grand-Duchy of Luxembourg Department of Immunology, Research Institute of Psychobiology, University of Trier, Trier D-54290, Germany
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette L-4354, Grand-Duchy of Luxembourg
| |
Collapse
|
4
|
Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel. Sci Rep 2016; 6:21248. [PMID: 26879043 PMCID: PMC4754649 DOI: 10.1038/srep21248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
TREK-2, a member of two-pore-domain potassium channel family, regulates cellular excitability in response to diverse stimuli. However, how such stimuli control channel function remains unclear. Here, by characterizing the responses of cytosolic proximal C-terminus deletant (ΔpCt) and transmembrane segment 4 (M4)-glycine hinge mutant (G312A) to 2-Aminoethoxydiphenyl borate (2-APB), an activator of TREK-2, we show that the transduction initiated from pCt domain is allosterically coupled with the conformation of selectivity filter (SF) via the movements of M4, without depending on the original status of SF. Moreover, ΔpCt and G312A also exhibited blunted responses to extracellular alkalization, a model to induce SF conformational transition. These results suggest that the coupling between pCt domain and SF is bidirectional, and M4 movements are involved in both processes. Further mechanistic exploration reveals that the function of Phe316, a residue close to the C-terminus of M4, is associated with such communications. However, unlike TREK-2, M4-hinge of TREK-1 only controls the transmission from pCt to SF, rather than SF conformational changes triggered by pHo changes. Together, our findings uncover the unique gating properties of TREK-2, and elucidate the mechanisms for how the extracellular and intracellular stimuli harness the pore gating allosterically.
Collapse
|