1
|
Li D, Ji J, Li X, Xie Y, Huang Y, Qin J, Ding X, Wang L, Fan Y. LNP-encapsulated miRNA29b for corneal repair: A novel approach to combat fibrosis. Mater Today Bio 2025; 32:101695. [PMID: 40230645 PMCID: PMC11995045 DOI: 10.1016/j.mtbio.2025.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Severe corneal injuries often result in corneal scarring, leading to visual impairment and corneal blindness. Currently, there is a lack of effective anti-corneal fibrosis drugs in clinical practice. MicroRNA-based therapies hold significant potential in combating fibrosis. However, the barrier function of the cornea and the fluid environment of the ocular surface reduce drug permeability and bioavailability, presenting significant challenges for local drug application. This study employs microfluidic technology to encapsulate miRNA29b in lipid nanoparticles (LNP) to create an LNP-miRNA29b delivery system (LNP-mir29b) for treating corneal mechanical injuries. In vitro experiments show that LNP-mir29b significantly inhibits the expression of α-smooth muscle actin (α-SMA) in an induced corneal stromal cell fibrosis model. In vivo experiments using rabbit corneal mechanical injury models indicate that LNP-mir29b effectively reduces fibrosis in the corneal stroma, promotes organized rearrangement of stromal collagen fibers, and decreases the expression of fibrosis-related genes, including Col1A2, Col3A1, Fn, and α-SMA. Additionally, LNP-mir29b accelerates the migration of corneal epithelial cells, promotes wound healing of the epithelium, restores the structural integrity of the corneal epithelium. The LNP system proposed in this study offers a novel approach with anti-fibrotic functionality, providing a new strategy for reducing scarring during the corneal injury repair process.
Collapse
Affiliation(s)
- Dongyan Li
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinyue Li
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yi Xie
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yan Huang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Junzhi Qin
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xili Ding
- School of Engineering Medicine, Beihang University, Beijing, Beijing, 100191, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, Beijing, Beijing, 100191, China
| |
Collapse
|
2
|
Wang Y, Jiang H, Chen Q, Guo F, Zhang B, Hu L, Huang X, Shen W, Gao J, Chen W, Xu W, Cai Z, Wei L, Li M. Myofibroblast-Targeting Extracellular Vesicles: A Promising Platform for Cardiac Fibrosis Drug Delivery. Biomater Res 2025; 29:0179. [PMID: 40225952 PMCID: PMC11986206 DOI: 10.34133/bmr.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/06/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Current pharmacological treatments for cardiac fibrosis are often limited by their efficacy and specificity, leading to marked side effects. Fibroblast activation protein (FAP) is specifically expressed on activated myofibroblasts (myoFbs) but not on resting cardiac fibroblasts, making it a promising target for cardiac fibrosis therapy. In this study, we engineered extracellular vesicles (EVs) conjugated with an anti-FAP single-chain variable fragment, termed αFAP-EVs, which specifically target myoFbs. Our results demonstrated that αFAP-EVs successfully targeted activated myoFbs in vitro and localized to fibrotic regions in isoproterenol-induced mouse hearts in vivo. To further enhance delivery efficiency, αFAP-EVs were combined with clodronate-loaded liposomes (αFAP-EL@CLD) to reduce liver accumulation and improve cardiac fibrotic site targeting. αFAP-EL@CLD loaded with cholesterol-methylated- and phosphorothioate-modified miR-29b (Agomir-29b) or the transforming growth factor beta 1 receptor inhibitor GW788388 significantly inhibited myoFb activation and reduced fibrosis in isoproterenol-induced mouse models. Importantly, these drug-loaded αFAP-EL@CLD vesicles exhibited high therapeutic efficacy with minimal systemic toxicity, attributed to their stability and targeted delivery capabilities. These findings suggest that αFAP-EL@CLD vesicles are promising candidates for cardiac fibrosis therapy, offering a foundation for future clinical applications.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Hao Jiang
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Qing Chen
- Department of Nuclear Medicine,
The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Fei Guo
- Department of Urology, Changhai Hospital,
Naval Medical University, Shanghai 200433, China
| | - Bei Zhang
- Institute of Immunology and Department of Orthopedics of the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X),
Soochow University, Suzhou 125123, Jiangsu, China
| | - Xuege Huang
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Wenwen Shen
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Jiapeng Gao
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Wenwen Chen
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Wei Xu
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Zhijian Cai
- Institute of Immunology and Department of Orthopedics of the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin Wei
- Department of Infectious Diseases,
The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Min Li
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Zhang H, Hong Z, Jiang Z, Hu W, Hu J, Zhu R. miR-29b-3p Affects the Hypertrophy of Ligamentum Flavum in Lumbar Spinal Stenosis and its Mechanism. Biochem Genet 2025; 63:1824-1838. [PMID: 38625592 DOI: 10.1007/s10528-024-10811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
To explore the effect of miR-29b-3p on fibrosis and hypertrophy of ligamentum flavum (LF) in lumbar spinal stenosis (LSS) and its underlying mechanism. Patients with LSS and lumbar disc herniation (LDH) (control) undergoing posterior lumbar laminectomy were included in this study. Human LF samples were obtained for LF cell isolation, RNA, and protein extraction. Histomorphological analysis of LF was performed using hematoxylin-eosin (HE) staining. After isolation, culture, and transfection of primary LF cells, different transfection groups were constructed: NC-mimic, miR-29b-3p-mimic, NC-inhibitor, and miR-29b-3p-inhibitor. Quantitative real time polymerase chain reaction (qRT-PCR) was performed to detect the expression of miR-29b-3p in LF and LF cells. Western blot analysis detected the protein expressions of P16 and CyclinD1. ELISA detected the protein expressions of TGF-β1, Smad2, Smad3, TLR4, Type I collagen, and Type III collagen. Finally, LF cell viability was detected using the Cell Counting Kit-8 (CCK8) assay. The thickness of LF was significantly thicker in the LSS group compared to the LDH group (p < 0.05), accompanied by a higher calcification degree, more fibroblasts, and a larger area of collagen fiber proliferation. miR-29b-3p expression was significantly lower in LSS-derived LF tissues and cells than in LDH-derived tissues and cells (both p < 0.05). Compared to the NC-mimic group, the miR-29b-3p-mimic group exhibited significantly higher miR-29b-3p expression, decreased protein expressions of Type I collagen, Type III collagen, TGF-β1, Smad2, Smad3, TLR4, P16, and CyclinD1, and inhibited LF cell proliferation (all p < 0.05). As expected, the miR-29b-3p-inhibitor group displayed contrasting expression patterns (all p < 0.05). Compared to the phosphate buffer saline (PBS) group, the Trimethylamine-N-Oxide (TMAO) group showed significantly increased expressions of TGF-β1, Smad2, Smad3, TLR4, Type I collagen, Type III collagen, P16, and CyclinD1, as well as enhanced LF cell proliferation (all p < 0.05). However, there was no significant difference between the TMAO group and the Ang II group (all p > 0.05). Upregulation of miR-29b-3p expression may play a role in improving LF fibrosis and hypertrophy in LSS by inhibiting P16 expression and suppressing the activation of the TGF-β/Smad signaling pathway. This finding offers new insights into future gene modification therapy for this patient population.
Collapse
Affiliation(s)
- Hongjie Zhang
- Department of Orthopedics, Dehong People's Hospital, Kunming Medical University Affiliated Dehong Hospital, Dehong, No.13 Yonghan Road, Mangshi District, 678400, China
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Zhixiong Hong
- Department of Orthopedics, Dehong People's Hospital, Kunming Medical University Affiliated Dehong Hospital, Dehong, No.13 Yonghan Road, Mangshi District, 678400, China
| | - Zehua Jiang
- Department of Spine Surgery, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300122, China
| | - Wei Hu
- Department of Spine Surgery, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300122, China
| | - Jiashao Hu
- Department of Orthopedics, Dehong People's Hospital, Kunming Medical University Affiliated Dehong Hospital, Dehong, No.13 Yonghan Road, Mangshi District, 678400, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300122, China.
| |
Collapse
|
4
|
Suliman M, Saleh RO, Chandra M, Rasool KH, Jabir M, Jawad SF, Hasan TF, Singh M, Singh M, Singh A. Macrophage-derived lncRNAs in cancer: regulators of tumor progression and therapeutic targets. Med Oncol 2025; 42:91. [PMID: 40048034 DOI: 10.1007/s12032-025-02643-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Macrophages are key tumor microenvironment (TME) regulators, exhibiting remarkable plasticity that enables them to either suppress or promote cancer progression. Emerging evidence highlights the critical role of macrophage-derived long non-coding RNAs (lncRNAs) in shaping tumor immunity, influencing macrophage polarization, immune evasion, angiogenesis, metastasis, and therapy resistance. This review comprehensively elucidates the functional roles of M1- and M2-associated lncRNAs, detailing their molecular mechanisms and impact on cancer pathogenesis. In summary, elucidating the roles of lncRNAs derived from macrophages in cancer progression offers new avenues for therapeutic strategies, significantly improving patient outcomes in the fight against the disease. Further research into the functional significance of these lncRNAs and the development of targeted therapies is essential to harness their potential fully in clinical applications. We further explore their potential as biomarkers for cancer prognosis and therapeutic targets for modulating macrophage activity to enhance anti-cancer immunity. Targeting macrophage-derived lncRNAs represents a promising avenue for precision oncology, offering novel strategies to reshape the TME and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq.
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Thikra F Hasan
- College of Health & Medical Technology, Uruk University, Baghdad, Iraq
| | - Mithilesh Singh
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
5
|
Cheng-Mei W, Luo G, Liu P, Ren W, Yang S. Potential Biomarkers in Myocardial Fibrosis: A Bioinformatic Analysis. Arq Bras Cardiol 2024; 121:e20230674. [PMID: 39699450 DOI: 10.36660/abc.20230674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 08/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Myocardial fibrosis (MF) occurs throughout the onset and progression of cardiovascular disease, and early diagnosis of MF is beneficial for improving cardiac function, but there is a lack of research on early biomarkers of MF. OBJECTIVES Utilizing bioinformatics techniques, we identified potential biomarkers for MF. METHODS Datasets related to MF were sourced from the GEO database. After processing the data, differentially expressed genes were screened. Differentially expressed genes were enriched, and subsequently, protein-protein interaction (PPI) was performed to analyze the differential genes. The associated miRNAs and transcription factors were predicted for these core genes. Finally, ROC validation was performed on the core genes to determine their specificity and sensitivity as potential biomarkers. The level of significance adopted was 5% (p < 0.05). RESULTS A total of 91 differentially expressed genes were identified, and PPI analysis yielded 31 central genes. Enrichment analysis showed that apoptosis, collagen, extracellular matrix, cell adhesion, and inflammation were involved in MF. One hundred and forty-two potential miRNAs were identified. the transcription factors JUN, NF-κB1, SP1, RELA, serum response factor (SRF), and STAT3 were enriched in most of the core targets. Ultimately, IL11, GADD45B, GDF5, NOX4, IGFBP3, ACTC1, MYOZ2, and ITGB8 had higher diagnostic accuracy and sensitivity in predicting MF based on ROC curve analysis. CONCLUSION Eight genes, IL11, GADD45B, GDF5, NOX4, IGFBP3, ACTC1, MYOZ2, and ITGB8, can serve as candidate biomarkers for MF. Processes such as cellular apoptosis, collagen protein synthesis, extracellular matrix formation, cellular adhesion, and inflammation are implicated in the development of MF.
Collapse
Affiliation(s)
- Wang Cheng-Mei
- Beibei Traditional Chinese Medicine Hospital, Chongqing - China
| | - Gang Luo
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan - China
| | - Ping Liu
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan - China
| | - Wei Ren
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan - China
| | - Sijin Yang
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan - China
| |
Collapse
|
6
|
Wang Z, Li L, Yang S, Li Z, Zhang P, Shi R, Zhou X, Tang X, Li Q. Possible mechanisms of SARS-CoV-2-associated myocardial fibrosis: reflections in the post-pandemic era. Front Microbiol 2024; 15:1470953. [PMID: 39444690 PMCID: PMC11497467 DOI: 10.3389/fmicb.2024.1470953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Since December 2019, coronavirus disease 2019 (COVID-19) has been spreading worldwide with devastating immediate or long-term effects on people's health. Although the lungs are the primary organ affected by COVID-19, individuals infected with SARS-CoV-2 also develop systemic lesions involving multiple organs throughout the body, such as the cardiovascular system. Emerging evidence reveals that COVID-19 could generate myocardial fibrosis, termed "COVID-19-associated myocardial fibrosis." It can result from the activation of fibroblasts via the renin-angiotensin-aldosterone system (RAAS), transforming growth factor-β1 (TGF-β1), microRNAs, and other pathways, and can also occur in other cellular interactions with SARS-CoV-2, such as immunocytes, endothelial cells. Nonetheless, to gain a more profound insight into the natural progression of COVID-19-related myocardial fibrosis, additional investigations are necessary. This review delves into the underlying mechanisms contributing to COVID-19-associated myocardial fibrosis while also examining the antifibrotic potential of current COVID-19 treatments, thereby offering guidance for future clinical trials of these medications. Ultimately, we propose future research directions for COVID-19-associated myocardial fibrosis in the post-COVID-19 era, such as artificial intelligence (AI) telemedicine. We also recommend that relevant tests be added to the follow-up of COVID-19 patients to detect myocardial fibrosis promptly.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luwei Li
- Department of Pediatric Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Third Clinical Medical College of Zhengzhou University, Zhengzhou, China
| | - Shuai Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojuan Tang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Pitt B, Diez J. Possible Role of Gut Microbiota Alterations in Myocardial Fibrosis and Burden of Heart Failure in Hypertensive Heart Disease. Hypertension 2024; 81:1467-1476. [PMID: 38716665 DOI: 10.1161/hypertensionaha.124.23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Epidemiological studies have revealed that hypertensive heart disease is a major risk factor for heart failure, and its heart failure burden is growing rapidly. The need to act in the face of this threat requires first an understanding of the multifactorial origin of hypertensive heart disease and second an exploration of new mechanistic pathways involved in myocardial alterations critically involved in cardiac dysfunction and failure (eg, myocardial interstitial fibrosis). Increasing evidence shows that alterations of gut microbiota composition and function (ie, dysbiosis) leading to changes in microbiota-derived metabolites and impairment of the gut barrier and immune functions may be involved in blood pressure elevation and hypertensive organ damage. In this review, we highlight recent advances in the potential contribution of gut microbiota alterations to myocardial interstitial fibrosis in hypertensive heart disease through blood pressure-dependent and blood pressure-independent mechanisms. Achievements in this field should open a new path for more comprehensive treatment of myocardial interstitial fibrosis in hypertensive heart disease and, thus, for the prevention of heart failure.
Collapse
Affiliation(s)
- Bertram Pitt
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor (B.P.)
| | - Javier Diez
- Department of Cardiovascular Diseases, Center for Applied Medical Research and School of Medicine, University of Navarra, Pamplona, Spain (J.D.)
| |
Collapse
|
8
|
Yesuf HA, Molla MD, Malik T, Seyoum Wendimagegn Z, Yimer Y. MicroRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes mellitus and its complications: A narrative review. Cell Biochem Funct 2024; 42:e4053. [PMID: 38773932 DOI: 10.1002/cbf.4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Diabetes mellitus (DM) is a heterogeneous group of disorders characterized by hyperglycemia. Microribonucleic acids (microRNAs) are noncoding RNA molecules synthesized in the nucleus, modified, and exported to the extracellular environment to bind to their complementary target sequences. It regulates protein synthesis in the targeted cells by inhibiting translation or triggering the degradation of the target messenger. MicroRNA-29 is one of noncoding RNA that can be secreted by adipose tissue, hepatocytes, islet cells, and brain cells. The expression level of the microRNA-29 family in several metabolic organs is regulated by body weight, blood concentrations of inflammatory mediators, serum glucose levels, and smoking habits. Several experimental studies have demonstrated the effect of microRNA-29 on the expression of target genes involved in glucose metabolism, insulin synthesis and secretion, islet cell survival, and proliferation. These findings shed new light on the role of microRNA-29 in the pathogenesis of diabetes and its complications, which plays a vital role in developing appropriate therapies. Different molecular pathways have been proposed to explain how microRNA-29 promotes the development of diabetes and its complications. However, to the best of our knowledge, no published review article has summarized the molecular mechanism of microRNA-29-mediated initiation of DM and its complications. Therefore, this narrative review aims to summarize the role of microRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes and its complications.
Collapse
Affiliation(s)
- Hassen Ahmed Yesuf
- Department of Biomedical Science, School of Medicine, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Meseret Derbew Molla
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Zeru Seyoum Wendimagegn
- Department of Biomedical Science, School of Medicine, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Yadelew Yimer
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Li JC, Jia J, Dong L, Hu ZJ, Huang XR, Wang HL, Wang L, Yang SJ, Lan HY. Angiotensin II mediates hypertensive cardiac fibrosis via an Erbb4-IR-dependent mechanism. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:180-190. [PMID: 37449045 PMCID: PMC10336735 DOI: 10.1016/j.omtn.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Transforming growth factor β (TGF-β)/Smad3 plays a vital role in hypertensive cardiac fibrosis. The long non-coding RNA (lncRNA) Erbb4-IR is a novel Smad3-dependent lncRNA that mediates kidney fibrosis. However, the role of Erbb4-IR in hypertensive heart disease remains unexplored and was investigated in the present study by ultrasound-microbubble-mediated silencing of cardiac Erbb4-IR in hypertensive mice induced by angiotensin II. We found that chronic angiotensin II infusion induced hypertension and upregulated cardiac Erbb4-IR, which was associated with cardiac dysfunction, including a decrease in left ventricle ejection fraction (LVEF) and LV fractional shortening (LVFS) and an increase in LV mass. Knockdown of cardiac Erbb4-IR by Erbb4-IR short hairpin RNA (shRNA) gene transfer effectively improved the angiotensin II-induced deterioration of cardiac function, although blood pressure was not altered. Furthermore, silencing cardiac Erbb4-IR also inhibited angiotensin II-induced progressive cardiac fibrosis, as evidenced by reduced collagen I and III, alpha-smooth muscle actin (α-SMA), and fibronectin accumulation. Mechanistically, improved hypertensive cardiac injury by specifically silencing cardiac Erbb4-IR was associated with increased myocardial Smad7 and miR-29b, revealing that Erbb4-IR may target Smad7 and miR-29b to mediate angiotensin II-induced hypertensive cardiac fibrosis. In conclusion, Erbb4-IR is pathogenic in angiotensin II (Ang II)-induced cardiac remodeling, and targeting Erbb4-IR may be a novel therapy for hypertensive cardiovascular diseases.
Collapse
Affiliation(s)
- Jian-Chun Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Dong
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- National Traditional Chinese Medicine Clinical Research Base, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhong-Jing Hu
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- National Traditional Chinese Medicine Clinical Research Base, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Hong-Lian Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Si-Jin Yang
- National Traditional Chinese Medicine Clinical Research Base, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui-Yao Lan
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
10
|
Tamayo SO, Cupitra NI, Narvaez-Sanchez R. Vascular adaptation to cancer beyond angiogenesis: The role of PTEN. Microvasc Res 2023; 147:104492. [PMID: 36709859 DOI: 10.1016/j.mvr.2023.104492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/06/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Cancer is a public health problem, and it needs blood vessels to grow. Knowing more about the processes of vascular adaptation to cancer improves our chances of attacking it, since the tumor for its extension needs such adaptation to satisfy its progressive demand for nutrients. The main objective of this review is to present the reader with some fundamental molecular pathways for vascular adaptation to cancer, highlighting within them the regulatory role of homologous tensin and phosphatase protein (PTEN). Hence the review describes vascular adaptation to cancer through somewhat known processes, such as angiogenesis, but emphasizes others that are much less explored, namely the changes in vascular reactivity and remodeling of the vascular wall -intima-media thickness and adjustments in the extracellular matrix- The role of PTEN in physiological and pathological vascular mechanisms in different types of cancer is deepened, as a crucial mediator in vascular adaptation to cancer, and points pending further exploration in cancer vascularization are suggested.
Collapse
Affiliation(s)
- Sofia Ortiz Tamayo
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Nelson Ivan Cupitra
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
11
|
Xi T, Wang R, Pi D, Ouyang J, Yang J. The p53/miR-29a-3p axis mediates the antifibrotic effect of leonurine on angiotensin II-stimulated rat cardiac fibroblasts. Exp Cell Res 2023; 426:113556. [PMID: 36933858 DOI: 10.1016/j.yexcr.2023.113556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Overactivation of cardiac fibroblasts (CFs) is one of the main causes of myocardial fibrosis (MF), and inhibition of CF activation is a crucial strategy for MF therapy. A previous study by our group demonstrated that leonurine (LE) effectively inhibits collagen synthesis and myofibroblast generation originated from CFs, and eventually mitigates the progression of MF (where miR-29a-3p is likely to be a vital mediator). However, the underlying mechanisms involved in this process remain unknown. Thus, the present study aimed to investigate the precise role of miR-29a-3p in LE-treated CFs, and to elucidate the pharmacological effects of LE on MF. Neonatal rat CFs were isolated and stimulated by angiotensin II (Ang II) to mimic the pathological process of MF in vitro. The results show that LE distinctly inhibits collagen synthesis, as well as the proliferation, differentiation and migration of CFs, all of which could be induced by Ang II. In addition, LE promotes apoptosis in CFs under Ang II stimulation. During this process, the down-regulated expressions of miR-29a-3p and p53 are partly restored by LE. Either knockdown of miR-29a-3p or inhibition of p53 by PFT-α (a p53 inhibitor) blocks the antifibrotic effect of LE. Notably, PFT-α suppresses miR-29a-3p levels in CFs under both normal and Ang II-treated conditions. Furthermore, ChIP analysis confirmed that p53 is bound to the promoter region of miR-29a-3p, and directly regulates its expression. Overall, our study demonstrates that LE upregulates p53 and miR-29a-3p expression, and subsequently inhibits CF overactivation, suggesting that the p53/miR-29a-3p axis may play a crucial role in mediating the antifibrotic effect of LE against MF.
Collapse
Affiliation(s)
- Tianlan Xi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ruiyu Wang
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Damao Pi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Innocenti T, Bigagli E, Lynch EN, Galli A, Dragoni G. MiRNA-Based Therapies for the Treatment of Inflammatory Bowel Disease: What Are We Still Missing? Inflamm Bowel Dis 2023; 29:308-323. [PMID: 35749310 DOI: 10.1093/ibd/izac122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 02/05/2023]
Abstract
Micro-RNAs (miRNAs) are noncoding RNAs usually 24-30 nucleotides long that play a central role in epigenetic mechanisms of inflammatory diseases and cancers. Recently, several studies have assessed the involvement of miRNAs in the pathogenesis of inflammatory bowel disease (IBD) and colitis-associated neoplasia. Particularly, it has been shown that many members of miRNAs family are involved in the pathways of inflammation and fibrogenesis of IBD; therefore, their use as inflammatory and fibrosis biomarkers has been postulated. In light of these results, the role of miRNAs in IBD therapy has been proposed and is currently under investigation with many in vitro and in vivo studies, murine models, and a phase 2a trial. The accumulating data have pushed miRNA-based therapy closer to clinical practice, although many open questions remain. With this systematic review, we discuss the current knowledge about the therapeutic effects of miRNAs mimicking and inhibition, and we explore the new potential targets of miRNA family for the treatment of inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Tommaso Innocenti
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Erica Nicola Lynch
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gabriele Dragoni
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
13
|
Mo WY, Cao SQ. MiR-29a-3p: a potential biomarker and therapeutic target in colorectal cancer. Clin Transl Oncol 2023; 25:563-577. [PMID: 36355327 PMCID: PMC9941256 DOI: 10.1007/s12094-022-02978-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Cancer is frequently caused by microRNAs, which control post-transcriptional levels of gene expression by binding to target mRNAs. MiR-29a-3p has recently been shown to play a twofold function in the majority of malignancies, including colorectal cancer (CRC), according to mounting evidence. Here, we not only briefly summarize such connection between miR-29a-3p and cancers, but aslo primarily evaluate the miR-29a-3p expression pattern, clinical applicability, and molecular mechanisms in CRC to provide a guide for future studies. This review established the diagnostic and prognostic value of miR-29a-3p abnormalty in a variety of clinical samples for CRC. Furthermore, current molecular mechanisms of miR-29a-3p for regulating cancerous biological processes such growth, invasion, metastasis, the epithelial-mesenchymal transformation process, and immunomodulation through its upstream regulatory factors and downstream targeted genes were briefly explored. More specifically, miR-29a-3p has been linked to a few medications that have been shown to have anticancer benefits. To sum up, miR-29a-3p is a promising biomarker and prospective therapeutic target for the diagnosis and prognosis of CRC, but further research is still needed to establish a theoretical basis for more practical applications.
Collapse
Affiliation(s)
- Wen-Yan Mo
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, Hubei, China
| | - Shi-Qiong Cao
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, Hubei, China.
| |
Collapse
|
14
|
Shi S, Jiang P. Therapeutic potentials of modulating autophagy in pathological cardiac hypertrophy. Biomed Pharmacother 2022; 156:113967. [DOI: 10.1016/j.biopha.2022.113967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
15
|
Dalgaard LT, Sørensen AE, Hardikar AA, Joglekar MV. The microRNA-29 family - role in metabolism and metabolic disease. Am J Physiol Cell Physiol 2022; 323:C367-C377. [PMID: 35704699 DOI: 10.1152/ajpcell.00051.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The microRNA-29a family members miR-29a-3p, miR-29b-3p and miR-29c-3p are ubiquitously expressed and consistently increased in various tissues and cell types in conditions of metabolic disease; obesity, insulin resistance and type 2 diabetes. In pancreatic beta cells, miR-29a is required for normal exocytosis, but increased levels are associated with impaired beta cell function. Similarly, in liver miR-29 species are higher in models of insulin resistance and type 2 diabetes, and either knock-out or depletion using a microRNA inhibitor improves hepatic insulin resistance. In skeletal muscle, miR-29 upregulation is associated with insulin resistance and altered substrate oxidation, and similarly, in adipocytes over-expression of miR-29a leads to insulin resistance. Blocking miR-29a using nucleic acid antisense therapeutics show promising results in preclinical animal models of obesity and type 2 diabetes, although the widespread expression pattern of miR-29 family members complicates the exploration of single target tissues. However, in fibrotic diseases, such as in late complications of diabetes and metabolic disease (diabetic kidney disease, non-alcoholic steatohepatitis), miR-29 expression is suppressed by TGFβ allowing increased extracellular matrix collagen to form. In the clinical setting circulating levels of miR-29a and miR-29b are consistently increased in type 2 diabetes and in gestational diabetes, and are also possible prognostic markers for deterioration of glucose tolerance. In conclusion, miR-29 plays an essential role in various organs relevant to intermediary metabolism and its upregulation contribute to impaired glucose metabolism, while it suppresses fibrosis development. Thus, a correct balance of miR-29a levels seems important for cellular and organ homeostasis in metabolism.
Collapse
Affiliation(s)
- Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anja E Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
16
|
Li X, Li R, You N, Zhao X, Li J, Jiang W. Butyric Acid Ameliorates Myocardial Fibrosis by Regulating M1/M2 Polarization of Macrophages and Promoting Recovery of Mitochondrial Function. Front Nutr 2022; 9:875473. [PMID: 35662928 PMCID: PMC9159497 DOI: 10.3389/fnut.2022.875473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Background We aimed to investigate the effect and mechanism of butyric acid on rat myocardial fibrosis (MF). Methods 16S rRNA sequencing was used to analyze the gut microbiota characteristics of the Sham group and MF group. HPLC was applied to measure butyric acid in the feces and serum. In vitro, rat macrophages RMa-bm were stimulated with LPS and IL-4, respectively, and then butyrate was added to study the influences of butyrate on M1/M2 polarization and mitochondrial function of rat macrophages. The rat macrophages and rat myocardial fibroblasts were co-cultured to explore the effect of butyrate on rat myocardial fibroblasts. In addition, MF rats were fed with butyric acid diet. Results Compared with the Sham group, collagen deposition in the MF group was increased, and fibrosis was serious. The abundance of Desulfovibrionaceae and Helicobacteraceae in the MF group was increased compared with the Sham group. Gut epithelial cells were destroyed in the MF group compared with the Sham group. Compared with the Sham group, LPS content in the MF group was increased and butyric acid was decreased. Butyrate inhibited M1 and promoted M2. Furthermore, butyrate may promote mitochondrial function recovery by regulating M1/M2 polarization of macrophages. After adding butyrate, cell proliferation ability was decreased, and aging and apoptosis were increased, which indicated that butyrate inhibited rat myocardial fibroblasts activity. Moreover, butyric acid could protect mitochondria and improve the symptoms of rats with MF. Conclusions Butyric acid ameliorated MF by regulating M1/M2 polarization of macrophages and promoting recovery of mitochondrial function.
Collapse
|
17
|
Yan N, Xiao C, Wang X, Xu Z, Yang J. Tanshinone IIA from Salvia miltiorrhiza exerts anti-fibrotic effects on cardiac fibroblasts and rat heart tissues by suppressing the levels of pro-fibrotic factors: The key role of miR-618. J Food Biochem 2022; 46:e14078. [PMID: 35014054 DOI: 10.1111/jfbc.14078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/11/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022]
Abstract
Tanshinone IIA (TAN) is widely employed for handling cardiovascular disorders. The current study explored the potential role of miRs in the antifibrotic effect of TAN on heart. Fibrotic features were induced in cardiac fibroblasts (CFs) and in rat hearts, and then handled with TAN. MicroRNAs (miRs) responding to TAN were determined using a microarray assay. The selected miR was modulated to verify its role in antifibrotic effects of TAN. TAN suppressed the viability and the production of α-SMA in CFs, which was associated with 101 miR being upregulated and 223 miR being downregulated. MiR-618 was selected as the potential target of TAN. Ang II inhibited miR-618 level and resulted in the upregulation of pro-fibrosis factors, which was reversed by TAN. The antifibrotic effect of TAN was weakened by miR-618 inhibition. TAN inhibits hypertrophy and collagen deposition in heart tissues, which is associated with the increased level of miR-618. PRACTICAL APPLICATIONS: The findings outlined in the current study show that the antifibrotic function of TAN is closely related to the function of miRs: the induction of miR-618 is indispensable for the function of TAN against the fibrotic process after heart injury, which will promote the application of TAN as an adjuvant therapy for improving heart function.
Collapse
Affiliation(s)
- Na Yan
- Second Department of Cardiology, Ganzhou People's Hospital, Ganzhou, China
| | - Chunqing Xiao
- Second Department of Cardiology, Ganzhou People's Hospital, Ganzhou, China
| | - Xianggui Wang
- Second Department of Cardiology, Ganzhou People's Hospital, Ganzhou, China
| | - Zufang Xu
- Second Department of Cardiology, Ganzhou People's Hospital, Ganzhou, China
| | - Jiangyong Yang
- Department of Cardiology, Ganzhou Municipal Hospital, Ganzhou, China
| |
Collapse
|