1
|
Schubert HC, Duda M, Eschner A, Weigand E, Kruckenhauser L. DNA barcoding as a tool to monitor the diversity of endangered spring snails in an Austrian National Park. Biodivers Data J 2023; 11:e91496. [PMID: 36761079 PMCID: PMC9850253 DOI: 10.3897/bdj.11.e91496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023] Open
Abstract
The Kalkalpen National Park is situated in Upper Austria and contains more than 800 springs. The international importance of this Park is, from the perspective of nature conservation directives, highly significant (European Nature Reserve Natura 2000, recognised wetland of the Ramsar convention). In the current study, the hydrobioid fauna ('spring snails') of the Kalkalpen National Park was evaluated. These tiny snails are difficult to determine; however, their investigation is especially desirable, as several species are threatened and as they are important for water quality assessment. Snails collected in 39 selected springs were examined with classical morphological methods (shell and genital anatomy) and, subsequently, by DNA analysis. For this task, the DNA barcode, a partial sequence of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene (length of the sequence 658-682 bp), was PCR amplified and sequenced. From 107 specimens, the DNA barcoding sequence could be obtained and compared with already existing DNA sequences. The (sub)endemic species Bythinellaconica, Hauffeniakerschneri, Hauffeniawienerwaldensis and Belgrandiellaaulaei could be clearly identified. For Bythiospeumnocki, despite the ambitious collecting effort, only empty shells were found in four springs (including the locus typicus spring) in the Park and its surroundings. The genus Bythinella was detected in 36 springs. From 25 of these localities, DNA barcodes could be created, which matches those of Bythinellaconica (comparison data from ABOL). It is, therefore, concluded that the species occurs widely in the Kalkalpen National Park. The genus Hauffenia was sampled from 16 springs. From one, the haplotype of Hauffeniawienerwaldensis could be identified (spring is 5 km outside the Park) and from six, the haplotype of Hauffeniakerschneri. Belgrandiellaaulaei was found in three springs, which all lie outside the boundaries and are, therefore, not included in the protection measures of the National Park. The data and analyses obtained contribute to the assessment of the taxonomic status of the species studied. The present study gives a good baseline for further monitoring of the hydrobioids in the Kalkalpen National Park, which is important to evaluate current as well as to decide on future protection measures for this group.
Collapse
Affiliation(s)
- Hannah C Schubert
- Central Research Laboratories, Natural History Museum, Vienna, AustriaCentral Research Laboratories, Natural History MuseumViennaAustria,Department of Evolutionary Biology, University of Vienna, Vienna, AustriaDepartment of Evolutionary Biology, University of ViennaViennaAustria
| | - Michael Duda
- Central Research Laboratories, Natural History Museum, Vienna, AustriaCentral Research Laboratories, Natural History MuseumViennaAustria,3rd Zoological Department, Natural History Museum Vienna, Vienna, Austria3rd Zoological Department, Natural History Museum ViennaViennaAustria
| | - Anita Eschner
- 3rd Zoological Department, Natural History Museum Vienna, Vienna, Austria3rd Zoological Department, Natural History Museum ViennaViennaAustria
| | - Erich Weigand
- Nationalpark OÖ Kalkalpen Ges.m.b.H., Molln, AustriaNationalpark OÖ Kalkalpen Ges.m.b.H.MollnAustria
| | - Luise Kruckenhauser
- Central Research Laboratories, Natural History Museum, Vienna, AustriaCentral Research Laboratories, Natural History MuseumViennaAustria,Department of Evolutionary Biology, University of Vienna, Vienna, AustriaDepartment of Evolutionary Biology, University of ViennaViennaAustria
| |
Collapse
|
2
|
Miller JP, Delicado D, García-Guerrero F, Ramos MA. Recurrent founder-event speciation across the Mediterranean likely shaped the species diversity and geographic distribution of the freshwater snail genus Mercuria Boeters, 1971 (Caenogastropoda: Hydrobiidae). Mol Phylogenet Evol 2022; 173:107524. [DOI: 10.1016/j.ympev.2022.107524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/31/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
3
|
Evidence for Plio-Pleistocene Duck Mussel Refugia in the Azov Sea River Basins. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12030118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Freshwater mussels (Bivalvia: Unionoida) play an important role in freshwater habitats as ecosystem engineers of the water environment. Duck mussel Anodonta anatina is widely distributed throughout Europe, Siberia, and Western and Central Asia, which makes it a convenient object for biogeographic studies. In this study, we analyzed the divergence of A. anatina populations and discovered a separate genetic lineage distributed in rivers of the Azov Sea basin. This was confirmed by the high genetic distances between this group and previously defined populations, and by the position of this clade in the Bayesian phylogeny calibrated by an external substitution rate. Based on our approximate Bayesian computation (ABC) analysis, biogeographic scenarios of A. anatina dispersal in Europe and Northern, Western, and Central Asia over the Neogene–Quaternary were simulated. The haplogroup’s isolation in the rivers of the Azov Sea basin most likely occurred in the Late Pliocene that was probably facilitated by rearrangement of freshwater basins boundaries in the Ponto-Caspian Region. Population genetic indices show the stability of this group, which allowed it to exist in the river basins of the region for a long time. The discovery of a long-term refugium in the rivers of the Azov Sea led to a better understanding of freshwater fauna evolution in the Neogene–Quaternary and highlighted the importance of conservation of these freshwater animals in the region as a source of unique genetic diversity.
Collapse
|
4
|
Copilaş-Ciocianu D, Zimţa AA, Grabowski M, Petrusek A. Survival in northern microrefugia in an endemic Carpathian gammarid (Crustacea: Amphipoda). ZOOL SCR 2018. [DOI: 10.1111/zsc.12285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Denis Copilaş-Ciocianu
- Department of Ecology; Faculty of Science; Charles University; Prague Czech Republic
- Laboratory of Evolutionary Ecology of Hydrobionts; Nature Research Centre; Vilnius Lithuania
| | - Alina-Andreea Zimţa
- Department of Ecology; Faculty of Science; Charles University; Prague Czech Republic
- Department of Biology-Chemistry; Faculty of Chemistry, Biology, Geography; West University of Timişoara; Timişoara Romania
| | - Michał Grabowski
- Department of Invertebrate Zoology and Hydrobiology; Faculty of Biology and Environmental Protection; University of Lodz; Łódź Poland
| | - Adam Petrusek
- Department of Ecology; Faculty of Science; Charles University; Prague Czech Republic
| |
Collapse
|
5
|
Spitsyn VM, Kondakov AV, Bolotov NI, Thi Pham N, Gofarov MY, Bolotov IN. DNA barcoding unravels contrasting evolutionary history of two widespread Asian tiger moth species during the Late Pleistocene. PLoS One 2018; 13:e0194200. [PMID: 29617397 PMCID: PMC5884489 DOI: 10.1371/journal.pone.0194200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/27/2018] [Indexed: 12/02/2022] Open
Abstract
Populations of widespread pest insects in tropical areas are characterized by a complex evolutionary history, with overlapping natural and human-mediated dispersal events, sudden expansions, and bottlenecks. Here, we provide biogeographic reconstructions for two widespread pest species in the tiger moth genus Creatonotos (Lepidoptera: Erebidae: Arctiinae) based on the mitochondrial cytochrome c oxidase subunit I (COI) gene. The Asian Creatonotos transiens reveals shallow genetic divergence between distant populations that does not support its current intraspecific systematics with several local subspecies. In contrast, the more widespread Creatonotos gangis comprises at least three divergent subclades corresponding to certain geographic areas, i.e. Australia, Arabia + South Asia and Southeast Asia. With respect to our approximate Bayesian computation (ABC) model, the expansion of Creatonotos gangis into Australia is placed in the Late Pleistocene (~65–63 ka). This dating coincide with an approximate time of the earliest human migration into the continent (~65–54 ka) and the period of intervisibility between Timor and Australia (~65–62 ka). Our findings highlight that the drying Sunda and Sahul shelf areas likely support successful migrations of Asian taxa into Australia during the Pleistocene. The phylogeographic patterns discovered in this study can be used to improve the effectiveness of integrated pest control programs that is a task of substantial practical importance to a broad range of agricultural stakeholders.
Collapse
Affiliation(s)
- Vitaly M. Spitsyn
- Lab for Molecular Ecology and Phylogenetics, Northern Arctic Federal University, Arkhangelsk, Russian Federation
- Institute of Biogeography and Genetic Resources, Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk, Russian Federation
- * E-mail:
| | - Alexander V. Kondakov
- Lab for Molecular Ecology and Phylogenetics, Northern Arctic Federal University, Arkhangelsk, Russian Federation
- Institute of Biogeography and Genetic Resources, Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Nikita I. Bolotov
- Institute of Biogeography and Genetic Resources, Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Nhi Thi Pham
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Mikhail Y. Gofarov
- Lab for Molecular Ecology and Phylogenetics, Northern Arctic Federal University, Arkhangelsk, Russian Federation
- Institute of Biogeography and Genetic Resources, Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Ivan N. Bolotov
- Lab for Molecular Ecology and Phylogenetics, Northern Arctic Federal University, Arkhangelsk, Russian Federation
- Institute of Biogeography and Genetic Resources, Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk, Russian Federation
| |
Collapse
|
6
|
Angyal D, Balázs G, Krízsik V, Herczeg G, Fehér Z. Molecular and morphological divergence in a stygobiont gastropod lineage (Truncatelloidea, Moitessieriidae, Paladilhiopsis
) within an isolated karstic area in the Mecsek Mountains (Hungary). J ZOOL SYST EVOL RES 2018. [DOI: 10.1111/jzs.12220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dorottya Angyal
- Department of Zoology; Hungarian Natural History Museum; Budapest Hungary
| | - Gergely Balázs
- Department of Systematic Zoology and Ecology; Eötvös Loránd University; Budapest Hungary
| | - Virág Krízsik
- Laboratory of Molecular Taxonomy; Hungarian Natural History Museum; Budapest Hungary
| | - Gábor Herczeg
- Department of Systematic Zoology and Ecology; Eötvös Loránd University; Budapest Hungary
| | - Zoltán Fehér
- Department of Zoology; Hungarian Natural History Museum; Budapest Hungary
- Central Research Laboratories; Zoology Department; Natural History Museum; Vienna Austria
| |
Collapse
|
7
|
Bolotov IN, Kondakov AV, Vikhrev IV, Aksenova OV, Bespalaya YV, Gofarov MY, Kolosova YS, Konopleva ES, Spitsyn VM, Tanmuangpak K, Tumpeesuwan S. Ancient River Inference Explains Exceptional Oriental Freshwater Mussel Radiations. Sci Rep 2017; 7:2135. [PMID: 28522869 PMCID: PMC5437074 DOI: 10.1038/s41598-017-02312-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 11/18/2022] Open
Abstract
The concept of long-lived (ancient) lakes has had a great influence on the development of evolutionary biogeography. According to this insight, a number of lakes on Earth have existed for several million years (e.g., Baikal and Tanganyika) and represent unique evolutionary hotspots with multiple intra-basin radiations. In contrast, rivers are usually considered to be variable systems, and the possibility of their long-term existence during geological epochs has never been tested. In this study, we reconstruct the history of freshwater basin interactions across continents based on the multi-locus fossil-calibrated phylogeny of freshwater mussels (Unionidae). These mussels most likely originated in Southeast and East Asia in the Jurassic, with the earliest expansions into North America and Africa (since the mid-Cretaceous) following the colonization of Europe and India (since the Paleocene). We discovered two ancient monophyletic mussel radiations (mean age ~51–55 Ma) within the paleo-Mekong catchment (i.e., the Mekong, Siam, and Malacca Straits paleo-river drainage basins). Our findings reveal that the Mekong may be considered a long-lived river that has existed throughout the entire Cenozoic epoch.
Collapse
Affiliation(s)
- Ivan N Bolotov
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation.
| | - Alexander V Kondakov
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Ilya V Vikhrev
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Olga V Aksenova
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Yulia V Bespalaya
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Mikhail Yu Gofarov
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Yulia S Kolosova
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Ekaterina S Konopleva
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Vitaly M Spitsyn
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Kitti Tanmuangpak
- Department of Science, Faculty of Science and Technology, Loei Rajabhat University, Loei, Thailand
| | - Sakboworn Tumpeesuwan
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| |
Collapse
|
8
|
Copilaş-Ciocianu D, Rutová T, Pařil P, Petrusek A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. Mol Phylogenet Evol 2017; 112:218-229. [PMID: 28478197 DOI: 10.1016/j.ympev.2017.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/17/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Isolated glacial refugia have been documented in Central Europe for a number of taxa, but conclusive evidence for epigean aquatic species has remained elusive. Using molecular data (mitochondrial and nuclear markers), we compared the spatial patterns of lineage diversity of the widely distributed Gammarus fossarum species complex between two adjacent biogeographically and geomorphologically distinct Central European regions: the Bohemian Massif and the Western Carpathians. We investigated if the observed patterns of spatial diversity are more likely to stem from historical or present-day factors. Phylogenetic and phylogeographic analyses revealed eight phylogenetically diverse lineages: two exhibiting local signatures of recent demographic expansion inhabit both regions, while the other six display a relict distributional pattern and are found only in the Western Carpathians. Molecular dating indicates that these lineages are old and probably diverged throughout the Miocene (7-18Ma). Furthermore, their distribution does not seem to be constrained by the present boundaries of river catchments or topography. The contrasting spatial patterns of diversity observed between the two regions thus more likely result from historical rather than contemporaneous or recent factors. Our results indicate that despite the high latitude and proximity to the Pleistocene ice sheets, the Western Carpathians functioned as long-term glacial refugia for permanent freshwater fauna, allowing the uninterrupted survival of ancient lineages through millions of years of drastic climatic fluctuations.
Collapse
Affiliation(s)
- Denis Copilaş-Ciocianu
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 12844 Prague, Czech Republic.
| | - Tereza Rutová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 12844 Prague, Czech Republic
| | - Petr Pařil
- Masaryk University, Faculty of Science, Department of Botany and Zoology, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Adam Petrusek
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 12844 Prague, Czech Republic
| |
Collapse
|
9
|
Vinarski MV, Aksenova OV, Bespalaya YV, Bolotov IN, Gofarov MY, Kondakov AV. Ladislavella tumrokensis: The first molecular evidence of a Nearctic clade of lymnaeid snails inhabiting Eurasia. SYST BIODIVERS 2016. [DOI: 10.1080/14772000.2016.1140244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Falniowski A, Szarowska M. Species distinctness of Hauffenia michleri (Kuščer, 1932) (Caenogastropoda: Truncatelloidea: Hydrobiidae). FOLIA MALACOLOGICA 2015. [DOI: 10.12657/folmal.023.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|