1
|
Morales P, Gajardo F, Valdivieso C, Valladares MA, Di Genova A, Orellana A, Gutiérrez RA, González M, Montecino M, Maass A, Méndez MA, Allende ML. Genomes of the Orestias pupfish from the Andean Altiplano shed light on their evolutionary history and phylogenetic relationships within Cyprinodontiformes. BMC Genomics 2024; 25:614. [PMID: 38890559 PMCID: PMC11184842 DOI: 10.1186/s12864-024-10416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND To unravel the evolutionary history of a complex group, a comprehensive reconstruction of its phylogenetic relationships is crucial. This requires meticulous taxon sampling and careful consideration of multiple characters to ensure a complete and accurate reconstruction. The phylogenetic position of the Orestias genus has been estimated partly on unavailable or incomplete information. As a consequence, it was assigned to the family Cyprindontidae, relating this Andean fish to other geographically distant genera distributed in the Mediterranean, Middle East and North and Central America. In this study, using complete genome sequencing, we aim to clarify the phylogenetic position of Orestias within the Cyprinodontiformes order. RESULTS We sequenced the genome of three Orestias species from the Andean Altiplano. Our analysis revealed that the small genome size in this genus (~ 0.7 Gb) was caused by a contraction in transposable element (TE) content, particularly in DNA elements and short interspersed nuclear elements (SINEs). Using predicted gene sequences, we generated a phylogenetic tree of Cyprinodontiformes using 902 orthologs extracted from all 32 available genomes as well as three outgroup species. We complemented this analysis with a phylogenetic reconstruction and time calibration considering 12 molecular markers (eight nuclear and four mitochondrial genes) and a stratified taxon sampling to consider 198 species of nearly all families and genera of this order. Overall, our results show that phylogenetic closeness is directly related to geographical distance. Importantly, we found that Orestias is not part of the Cyprinodontidae family, and that it is more closely related to the South American fish fauna, being the Fluviphylacidae the closest sister group. CONCLUSIONS The evolutionary history of the Orestias genus is linked to the South American ichthyofauna and it should no longer be considered a member of the Cyprinodontidae family. Instead, we submit that Orestias belongs to the Orestiidae family, as suggested by Freyhof et al. (2017), and that it is the sister group of the Fluviphylacidae family, distributed in the Amazonian and Orinoco basins. These two groups likely diverged during the Late Eocene concomitant with hydrogeological changes in the South American landscape.
Collapse
Affiliation(s)
- Pamela Morales
- Millennium Institute Center for Genome Regulation, Santiago, Chile.
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Felipe Gajardo
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Camilo Valdivieso
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Moisés A Valladares
- Laboratorio de Biología Evolutiva, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Grupo de Biodiversidad y Cambio Global (GBCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
| | - Alex Di Genova
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- DiGenoma-Lab, Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
- Centro de Modelamiento Matemático UMI-CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Ariel Orellana
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo A Gutiérrez
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- ANID Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av Libertador Bernardo O'Higgins 340, Santiago, Chile
- Institute of Ecology and Biodiversity (IEB), Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Mauricio González
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
| | - Martin Montecino
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, 837001, Chile
| | - Alejandro Maass
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Centro de Modelamiento Matemático IRL 2807 CNRS, Universidad de Chile, Santiago, Chile
- Departamento de Ingeniería Matemática, Universidad de Chile, Santiago, Chile
| | - Marco A Méndez
- Institute of Ecology and Biodiversity (IEB), Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Laboratorio de Genética y Evolución, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Ecología Aplicada y Sustentabilidad (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Cape Horn International Center (CHIC), Parque Etnobotánico Omora, Universidad de Magallanes, Puerto Williams, Chile
| | - Miguel L Allende
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Channing A, Schmitz A, Zancolli G, Conradie W, Rödel MO. Phylogeny and taxonomy of the African frog genus Strongylopus (Anura: Pyxicephalidae). REV SUISSE ZOOL 2022. [DOI: 10.35929/rsz.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Alan Channing
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Andreas Schmitz
- Muséum d'histoire naturelle, UREC - Herpetology & Ichthyology, C.P. 6434, CH-1211 Genève 6, Switzerland
| | - Giulia Zancolli
- Department of Ecology and Evolution, Université de Lausanne, Quartier UNIL-Sorge Bâtiment Biophore, CH-1015 Lausanne, Switzerland
| | - Werner Conradie
- Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood, Gqeberha 6013, South Africa
| | - Mark-Oliver Rödel
- Museum für Naturkunde – Leibnitz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, D-10115 Berlin, Germany
| |
Collapse
|
3
|
Val P, Lyons NJ, Gasparini N, Willenbring JK, Albert JS. Landscape Evolution as a Diversification Driver in Freshwater Fishes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.788328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The exceptional concentration of vertebrate diversity in continental freshwaters has been termed the “freshwater fish paradox,” with > 15,000 fish species representing more than 20% of all vertebrate species compressed into tiny fractions of the Earth’s land surface area (<0.5%) or total aquatic habitat volume (<0.001%). This study asks if the fish species richness of the world’s river basins is explainable in terms of river captures using topographic metrics as proxies. The River Capture Hypothesis posits that drainage-network rearrangements have accelerated biotic diversification through their combined effects on dispersal, speciation, and extinction. Yet rates of river capture are poorly constrained at the basin scale worldwide. Here we assess correlations between fish species density (data for 14,953 obligate freshwater fish species) and basin-wide metrics of landscape evolution (data for 3,119 river basins), including: topography (elevation, average relief, slope, drainage area) and climate (average rainfall and air temperature). We assess the results in the context of both static landscapes (e.g., species-area and habitat heterogeneity relationships) and transient landscapes (e.g., river capture, tectonic activity, landscape disequilibrium). We also relax assumptions of functional neutrality of basins (tropical vs. extratropical, tectonically stable vs. active terrains). We found a disproportionate number of freshwater species in large, lowland river basins of tropical South America, Africa, and Southeast Asia, under predictable conditions of large geographic area, tropical climate, low topographic relief, and high habitat volume (i.e., high rainfall rates). However, our results show that these conditions are only necessary, but not fully sufficient, to explain the basins with the highest diversity. Basins with highest diversity are all located on tectonically stable regions, places where river capture is predicted to be most conducive to the formation of high fish species richness over evolutionary timescales. Our results are consistent with predictions of several landscape evolution models, including the River Capture Hypothesis, Mega Capture Hypothesis, and Intermediate Capture Rate Hypothesis, and support conclusions of numerical modeling studies indicating landscape transience as a mechanistic driver of net diversification in riverine and riparian organisms with widespread continental distributions.
Collapse
|
4
|
Bragança PHN, van Zeeventer RM, Bills R, Tweddle D, Chakona A. Diversity of the southern Africa Lacustricola Myers, 1924 and redescription of Lacustricola johnstoni (Günther, 1894) and Lacustricola myaposae (Boulenger, 1908) (Cyprinodontiformes, Procatopodidae). Zookeys 2020; 923:91-113. [PMID: 32292273 PMCID: PMC7142171 DOI: 10.3897/zookeys.923.48420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/20/2020] [Indexed: 11/12/2022] Open
Abstract
Through the analysis of a comprehensive database of COI sequences, with the sequencing of 48 specimens, a first insight into the genetic diversity, distribution and relationships between the southern Africa "Lacustricola" species is presented. Species from "Lacustricola" occur mainly in freshwater systems within the arid savanna, and are considered to be widely distributed in southern Africa, but most of them are data deficient taxa. Two species are redescribed, "Lacustricola" johnstoni (Günther, 1894) and "Lacustricola" myaposae (Boulenger, 1908), based on specimens collected at their respective type localities. Detailed osteological and life colouration information is presented for the first time. "Lacustricola" johnstoni was described from the Upper Shire River in Mangochi, Lake Malawi but is herein considered as widespread in the Okavango, Zambezi, southern Africa east coastal drainages and the Bangweulu in the Congo System. A sympatric similar species occurring in the Okavango is also identified. "Lacustricola" myaposae (Boulenger, 1908), was described from the Nseleni River in KwaZulu-Natal Province, South Africa and is herein considered to be endemic to the small coastal river drainages within this region. Lectotypes for both "L." johnstoni and "L." myaposae are designated. A new species from the Lualaba River in the Congo System, sister to "L." macrurus is identified, and the deep bodied "L." jubbi is considered sister taxon to a clade including "L." johnstoni and "L." myaposae.
Collapse
Affiliation(s)
- Pedro H N Bragança
- South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, 6140, South Africa South African Institute for Aquatic Biodiversity Grahamstown South Africa
| | - Ryan M van Zeeventer
- South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, 6140, South Africa South African Institute for Aquatic Biodiversity Grahamstown South Africa
| | - Roger Bills
- South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, 6140, South Africa South African Institute for Aquatic Biodiversity Grahamstown South Africa
| | - Denis Tweddle
- South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, 6140, South Africa South African Institute for Aquatic Biodiversity Grahamstown South Africa
| | - Albert Chakona
- South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, 6140, South Africa South African Institute for Aquatic Biodiversity Grahamstown South Africa.,Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa Rhodes University Grahamstown South Africa
| |
Collapse
|
5
|
Van Der Zee JR, Bernotas K, Bragança PH, Stiassny ML. An Unexpected New Poropanchax (Cyprinodontiformes, Procatopodidae) from the Kongo Central Province, Democratic Republic of Congo. AMERICAN MUSEUM NOVITATES 2019. [DOI: 10.1206/3941.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Jouke R. Van Der Zee
- Royal Museum for Central Africa, Vertebrate Section, Ichthyology, Tervuren, Belgium
| | - Kimberly Bernotas
- American Museum of Natural History, Department of Ichthyology, New York
| | - Pedro H.N. Bragança
- Federal University of Rio de Janeiro, Laboratory of Systematics and Evolution of Teleost Fishes, Institute of Biology, Rio de Janeiro, Brazil; and South African Institute for Aquatic Biodiversity, Grahamstown, South Africa
| | | |
Collapse
|