1
|
Rojas-Torres M, Sánchez-Gomar I, Rosal-Vela A, Beltrán-Camacho L, Eslava-Alcón S, Alonso-Piñeiro JÁ, Martín-Ramírez J, Moreno-Luna R, Durán-Ruiz MC. Assessment of endothelial colony forming cells delivery routes in a murine model of critical limb threatening ischemia using an optimized cell tracking approach. Stem Cell Res Ther 2022; 13:266. [PMID: 35729651 PMCID: PMC9210810 DOI: 10.1186/s13287-022-02943-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/07/2022] [Indexed: 01/15/2023] Open
Abstract
Background Endothelial colony forming cells (ECFCs), alone or in combination with mesenchymal stem cells, have been selected as potential therapeutic candidates for critical limb-threatening ischemia (CLTI), mainly for those patients considered as “no-option,” due to their capability to enhance revascularization and perfusion recovery of ischemic tissues. Nevertheless, prior to translating cell therapy to the clinic, biodistribution assays are required by regulatory guidelines to ensure biosafety as well as to discard undesired systemic translocations. Different approaches, from imaging technologies to qPCR-based methods, are currently applied. Methods In the current study, we have optimized a cell-tracking assay based on DiR fluorescent cell labeling and near-infrared detection for in vivo and ex vivo assays. Briefly, an improved protocol for DiR staining was set up, by incubation of ECFCs with 6.67 µM DiR and intensive washing steps prior cell administration. The minimal signal detected for the residual DiR, remaining after these washes, was considered as a baseline signal to estimate cell amounts correlated to the DiR intensity values registered in vivo. Besides, several assays were also performed to determine any potential effect of DiR over ECFCs functionality. Furthermore, the optimized protocol was applied in combination with qPCR amplification of specific human Alu sequences to assess the final distribution of ECFCs after intramuscular or intravenous administration to a murine model of CLTI. Results The optimized DiR labeling protocol indicated that ECFCs administered intramuscularly remained mainly within the hind limb muscle while cells injected intravenously were found in the spleen, liver and lungs. Conclusion Overall, the combination of DiR labeling and qPCR analysis in biodistribution assays constitutes a highly sensitive approach to systemically track cells in vivo. Thereby, human ECFCs administered intramuscularly to CLTI mice remained locally within the ischemic tissues, while intravenously injected cells were found in several organs. Our data corroborate the need to perform biodistribution assays in order to define specific parameters such as the optimal delivery route for ECFCs before their application into the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02943-8.
Collapse
Affiliation(s)
- Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain
| | - Lucía Beltrán-Camacho
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain
| | - Sara Eslava-Alcón
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain
| | - José Ángel Alonso-Piñeiro
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain
| | | | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain. .,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain.
| |
Collapse
|
2
|
Cho SG, Kong EJ, Kang WJ, Paeng JC, Bom HSH, Cho I. KSNM60 in Cardiology: Regrowth After a Long Pause. Nucl Med Mol Imaging 2021; 55:151-161. [PMID: 34422125 PMCID: PMC8322215 DOI: 10.1007/s13139-021-00702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Abstract
The Korean Society of Nuclear Medicine (KSNM) is celebrating its 60th anniversary in honor of the nuclear medicine professionals who have dedicated their efforts towards research, academics, and the more comprehensive clinical applications and uses of nuclear imaging modalities. Nuclear cardiology in Korea was at its prime time in the 1990s, but its growth was interrupted by a long pause. Despite the academic and practical challenges, nuclear cardiology in Korea now meets the second leap, attributed to the growth in molecular imaging tailored for many non-coronary diseases and the genuine values of nuclear myocardial perfusion imaging. In this review, we describe the trends, achievements, challenges, and perspectives of nuclear cardiology throughout the 60-year history of the KSNM.
Collapse
Affiliation(s)
- Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Eun Jung Kong
- Department of Nuclear Medicine, Yeungnam University Medical Center, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415 Republic of Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Yonsei University Severance Hospital, Seoul, Republic of Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hee-Seung Henry Bom
- 5Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Jeonnam, Republic of Korea
| | - Ihnho Cho
- Department of Nuclear Medicine, Yeungnam University Medical Center, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415 Republic of Korea
| |
Collapse
|
3
|
The Effect of MicroRNA-101 on Angiogenesis of Human Umbilical Vein Endothelial Cells during Hypoxia and in Mice with Myocardial Infarction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5426971. [PMID: 32953883 PMCID: PMC7487113 DOI: 10.1155/2020/5426971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/10/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Background Previous studies showed that recanalization and angiogenesis within the infarct region are of vital importance to the survival of myocardial cells during the treatment of acute myocardial infarction (AMI). Methods In this study, EdU cell proliferation assay, Transwell assay, scratch wound assay, and tube formation assay were used. Twelve bioinformatics analysis packages were used to predict the target genes of miR-101. Target genes were verified by luciferase reporter generation and assay, fluorescent quantitative PCR, and western blotting. Animal model and treatments were detected by M-mode echocardiography and immunofluorescent staining of CD31, Ki67, and α-SMA. Results AgomiR-101 significantly enhanced HUVEC proliferation, migration, and tube formation. A double-luciferase reporter assay revealed that the hsa-miR-101 mimic attenuated the activity of the EIF4E3′-UTR-wt type plasmid by 36%. The expression levels of HIF-1α and VEGF-A in the scrambled RNA group were significantly lower than those in the EIF4E3 siRNA and agomiR-101 groups. The left ventricular ejection fraction of the AMI+Adv-miR-101 group was significantly higher than that of the AMI+Adv-null and Sham+Adv-null groups. The proliferation of vessel cells in the peripheral infarcted myocardium was higher in the AMI+Adv-miR-101 group than that in the AMI+Adv-null and Sham+Adv-null groups. Conclusion MiR-101 can promote angiogenesis in the region surrounding the myocardial infarction.
Collapse
|
4
|
Hwang H, Jeong HS, Oh PS, Kim M, Lee TK, Kwon J, Kim HS, Lim ST, Sohn MH, Jeong HJ. PEGylated nanoliposomes encapsulating angiogenic peptides improve perfusion defects: Radionuclide imaging-based study. Nucl Med Biol 2016; 43:552-558. [DOI: 10.1016/j.nucmedbio.2016.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
|
5
|
Hwang H, Kim HS, Jeong HS, Rajasaheb BT, Kim M, Oh PS, Lim ST, Sohn MH, Jeong HJ. Liposomal angiogenic peptides for ischemic limb perfusion: comparative study between different administration methods. Drug Deliv 2016; 23:3619-3628. [DOI: 10.1080/10717544.2016.1212951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hyosook Hwang
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Hyeon-Soo Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Hwan-Seok Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Bagalkot Tarique Rajasaheb
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Minjoo Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Phil-Sun Oh
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Seok Tae Lim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Myung-Hee Sohn
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| |
Collapse
|
6
|
England CG, Im HJ, Feng L, Chen F, Graves SA, Hernandez R, Orbay H, Xu C, Cho SY, Nickles RJ, Liu Z, Lee DS, Cai W. Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. Biomaterials 2016; 100:101-9. [PMID: 27254470 DOI: 10.1016/j.biomaterials.2016.05.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/08/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
As peripheral arterial disease (PAD) results in muscle ischemia and neovascularization, it has been claimed that nanoparticles can passively accumulate in ischemic tissues through the enhanced permeability and retention (EPR) effect. At this time, a quantitative evaluation of the passive targeting capabilities of nanoparticles has not been reported in PAD. Using a murine model of hindlimb ischemia, we quantitatively assessed the passive targeting capabilities of (64)Cu-labeled PEGylated reduced graphene oxide - iron oxide nanoparticles ((64)Cu-RGO-IONP-PEG) through the EPR effect using positron emission tomography (PET) imaging. Serial laser Doppler imaging was performed to monitor changes in blood perfusion upon surgical induction of ischemia. Nanoparticle accumulation was assessed at 3, 10, and 17 days post-surgery and found to be highest at 3 days post-surgery, with the ischemic hindlimb displaying an accumulation of 14.7 ± 0.5% injected dose per gram (%ID/g). Accumulation of (64)Cu-RGO-IONP-PEG was lowest at 17 days post-surgery, with the ischemic hindlimb displaying only 5.1 ± 0.5%ID/g. Furthermore, nanoparticle accumulation was confirmed by photoacoustic imaging (PA). The combination of PET and serial Doppler imaging showed that nanoparticle accumulation in the ischemic hindlimb negatively correlated with blood perfusion. Thus, we quantitatively confirmed that (64)Cu-RGO-IONP-PEG passively accumulated in ischemic tissue via the EPR effect, which is reduced as the perfusion normalizes. As (64)Cu-RGO-IONP-PEG displayed substantial accumulation in the ischemic tissue, this nanoparticle platform may function as a future theranostic agent, providing both imaging and therapeutic applications.
Collapse
Affiliation(s)
- Christopher G England
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Hyung-Jun Im
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA; Department of Molecular Medicine and Biopharmaceutical Sciences, Department of Nuclear Medicine, Seoul National University, Seoul 110-744, South Korea
| | - Liangzhu Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Laboratory, Soochow University Suzhou, Jiangsu 215123, China
| | - Feng Chen
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA
| | - Stephen A Graves
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Hakan Orbay
- Department of Surgery, University of California-Davis, Sacramento, CA 95817, USA
| | - Cheng Xu
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA
| | - Steve Y Cho
- Department of Radiology, University of Wisconsin - Madison, WI 53705, USA
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Zhuang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Laboratory, Soochow University Suzhou, Jiangsu 215123, China
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Department of Nuclear Medicine, Seoul National University, Seoul 110-744, South Korea
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA; Department of Radiology, University of Wisconsin - Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA.
| |
Collapse
|
7
|
Hwang H, Jeong HS, Oh PS, Na KS, Kwon J, Kim J, Lim S, Sohn MH, Jeong HJ. Improving Cerebral Blood Flow Through Liposomal Delivery of Angiogenic Peptides: Potential of ¹⁸F-FDG PET Imaging in Ischemic Stroke Treatment. J Nucl Med 2015; 56:1106-11. [PMID: 25977466 DOI: 10.2967/jnumed.115.154443] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/09/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Strategies to promote angiogenesis can benefit cerebral ischemia. We determined whether liposomal delivery of angiogenic peptides with a known biologic activity of vascular endothelial growth factor benefitted cerebral ischemia. Also, the study examined the potential of (18)F-FDG PET imaging in ischemic stroke treatment. METHODS Male Sprague-Dawley rats (n = 40) underwent 40 min of middle cerebral artery occlusion. After 15 min of reperfusion, the rats (n = 10) received angiogenic peptides incorporated into liposomes. Animals receiving phosphate-buffered solution or liposomes without peptides served as controls. One week later, (18)F-FDG PET imaging was performed to examine regional changes in glucose utilization in response to the angiogenic therapy. The following day, (99m)Tc-hexamethylpropyleneamine oxime autoradiography was performed to determine changes in cerebral perfusion after angiogenic therapy. Corresponding changes in angiogenic markers, including von Willebrand factor and angiopoietin-1 and -2, were determined by immunostaining and polymerase chain reaction analysis, respectively. RESULTS A 40-min period of middle cerebral artery occlusion decreased blood perfusion in the ipsilateral ischemic cortex of the brain, compared with that in the contralateral cortex, as measured by (99m)Tc-hexamethylpropyleneamine oxime autoradiography. Liposomal delivery of angiogenic peptides to the ischemic hemisphere of the brain attenuated the cerebral perfusion defect compared with controls. Similarly, vascular density evidenced by von Willebrand factor-positive staining was increased in response to angiogenic therapy, compared with that of controls. This increase was accompanied by an early increase in angiopoietin-2 expression, a gene participating in angiogenesis. (18)F-FDG PET imaging measured at 7 d after treatment revealed that liposomal delivery of angiogenic peptides facilitated glucose utilization in the ipsilateral ischemic cortex of the brain, compared with that in the controls. Furthermore, the change in regional glucose utilization was correlated with the extent of improvement in cerebral perfusion (r = 0.742, P = 0.035). CONCLUSION Liposomal delivery of angiogenic peptides benefits cerebral ischemia. (18)F-FDG PET imaging holds promise as an indicator of the effectiveness of angiogenic therapy in cerebral ischemia.
Collapse
Affiliation(s)
- Hyosook Hwang
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, South Korea
| | - Hwan-Seok Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, South Korea
| | - Phil-Sun Oh
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, South Korea
| | - Kyung-Suk Na
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, South Korea
| | - JeongIl Kwon
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, South Korea
| | - Jeonghun Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, South Korea
| | - SeokTae Lim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, South Korea
| | - Myung-Hee Sohn
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, South Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, South Korea
| |
Collapse
|