2
|
McGill MR, Curry SC. The Evolution of Circulating Biomarkers for Use in Acetaminophen/Paracetamol-Induced Liver Injury in Humans: A Scoping Review. LIVERS 2023; 3:569-596. [PMID: 38434489 PMCID: PMC10906739 DOI: 10.3390/livers3040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Acetaminophen (APAP) is a widely used drug, but overdose can cause severe acute liver injury. The first reports of APAP hepatotoxicity in humans were published in 1966, shortly after the development of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as the first biomarkers of liver injury as opposed to liver function. Thus, the field of liver injury biomarkers has evolved alongside the growth in APAP hepatotoxicity incidence. Numerous biomarkers have been proposed for use in the management of APAP overdose patients in the intervening years. Here, we comprehensively review the development of these markers from the 1960s to the present day and briefly discuss possible future directions.
Collapse
Affiliation(s)
- Mitchell R McGill
- Dept. of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
- Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
- Dept. of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
| | - Steven C Curry
- Division of Clinical Data Analytics and Decision Support, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85006, USA
- Department of Medical Toxicology, Banner-University Medical Center Phoenix, Phoenix, AZ 85006, USA
| |
Collapse
|
3
|
Monte AA, Vest A, Reisz JA, Berninzoni D, Hart C, Dylla L, D'Alessandro A, Heard KJ, Wood C, Pattee J. A Multi-Omic Mosaic Model of Acetaminophen Induced Alanine Aminotransferase Elevation. J Med Toxicol 2023; 19:255-261. [PMID: 37231244 PMCID: PMC10212224 DOI: 10.1007/s13181-023-00951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Acetaminophen (APAP) is the most common cause liver injury following alcohol in US patients. Predicting liver injury and subsequent hepatic regeneration in patients taking therapeutic doses of APAP may be possible using new 'omic methods such as metabolomics and genomics. Multi'omic techniques increase our ability to find new mechanisms of injury and regeneration. METHODS We used metabolomic and genomic data from a randomized controlled trial of patients administered 4 g of APAP per day for 14 days or longer with blood samples obtained at 0 (baseline), 4, 7, 10, 13 and 16 days. We used the highest ALT as the clinical outcome to be predicted in our integrated analysis. We used penalized regression to model the relationship between genetic variants and day 0 metabolite level, and then performed a metabolite-wide colocalization scan to associate the genetically regulated component of metabolite expression with ALT elevation. Genome-wide association study (GWAS) analyses were conducted for ALT elevation and metabolite level using linear regression, with age, sex, and the first five principal components included as covariates. Colocalization was tested via a weighted sum test. RESULTS Out of the 164 metabolites modeled, 120 met the criteria for predictive accuracy and were retained for genetic analyses. After genomic examination, eight metabolites were found to be under genetic control and predictive of ALT elevation due to therapeutic acetaminophen. The metabolites were: 3-oxalomalate, allantoate, diphosphate, L-carnitine, L-proline, maltose, and ornithine. These genes are important in the tricarboxylic acid cycle (TCA), urea breakdown pathway, glutathione production, mitochondrial energy production, and maltose metabolism. CONCLUSIONS This multi'omic approach can be used to integrate metabolomic and genomic data allowing identification of genes that control downstream metabolites. These findings confirm prior work that have identified mitochondrial energy production as critical to APAP induced liver injury and have confirmed our prior work that demonstrate the importance of the urea cycle in therapeutic APAP liver injury.
Collapse
Affiliation(s)
- Andrew A Monte
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA.
- Center for Bioinformatics & Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
- Skaggs School of Pharmacy, University of Colorado, Aurora, CO, USA.
- Denver Health and Hospital Authority, Rocky Mountain Poison & Drug Center, Denver, CO, USA.
| | - Alexis Vest
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Julie A Reisz
- Metabolomics Core, Department of Biochemistry and Molecular Genetics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Danielle Berninzoni
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Claire Hart
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Layne Dylla
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
- Center for Bioinformatics & Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Angelo D'Alessandro
- Metabolomics Core, Department of Biochemistry and Molecular Genetics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Kennon J Heard
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
- Denver Health and Hospital Authority, Rocky Mountain Poison & Drug Center, Denver, CO, USA
| | - Cheyret Wood
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jack Pattee
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Monte AA, Mackenzie IA, Pattee J, Kaiser S, Willems E, Rumack B, Reynolds KM, Dart RC, Heard KJ. Genetic variants associated with ALT elevation from therapeutic acetaminophen. Clin Toxicol (Phila) 2022; 60:1198-1204. [PMID: 36102175 PMCID: PMC9701448 DOI: 10.1080/15563650.2022.2117053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Several studies have suggested genetic variants associated with acetaminophen induced liver injury (DILI) following overdose. Genetic variation associated with acetaminophen-induced alanine aminotransferase elevation during therapeutic dosing has not been examined. METHODS We performed genetic analyses on patients that ingested therapeutic doses of 4 grams of acetaminophen for up to 16 days. We examined 20 genes previously implicated in the metabolism of acetaminophen or the development of immune-mediated DILI using the Illumina Multi-Ethnic Global Array 2. Autosomes were aligned and imputed using TOPMed. A candidate gene region analysis was performed by testing each gene individually using linkage disequilibrium (LD) pruned variants with the adaptive sum of powered scores (aSPU) test from the aSPU R package. The highest measured ALT during therapy, the maximum ALT, was used as the outcome. RESULTS 192 subjects taking therapeutic APAP were included in the genetic analysis. 136 (70.8%) were female, 133 (69.2%) were Caucasian race, and the median age was 34 years (IQR: 26, 46). Age > 50 years was the only clinical factor associated with maximum ALT increase. Variants in SULT1E1, the gene responsible for Sulfotransferase Family 1E Member 1 enzyme production, were associated with maximum ALT. No single variant drove this association, but rather the association was due to the additive effects of numerous variants within the gene. No other genes were associated with maximum ALT increase in this cohort. CONCLUSION Acetaminophen induced ALT elevation at therapeutic doses was not associated with variation in most genes associated with acetaminophen metabolism or immune-induced DILI in this cohort. The role of SULT1E1 polymorphism in acetaminophen-induced elevated ALT needs further examination.
Collapse
Affiliation(s)
- Andrew A. Monte
- University of Colorado School of Medicine, Department of Emergency Medicine, Aurora, CO
- University of Colorado School of Medicine, Center for Bioinformatics & Personalized Medicine, Aurora, CO
- University of Colorado, Skaggs School of Pharmacy, Aurora, CO
- Rocky Mountain Poison & Drug Safety, Denver Health and Hospital Authority, Denver, CO
| | - Ian Arriaga Mackenzie
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO
| | - Jack Pattee
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO
| | - Sasha Kaiser
- Rocky Mountain Poison & Drug Safety, Denver Health and Hospital Authority, Denver, CO
| | - Emileigh Willems
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO
| | - Barry Rumack
- University of Colorado School of Medicine, Department of Emergency Medicine, Aurora, CO
- Rocky Mountain Poison & Drug Safety, Denver Health and Hospital Authority, Denver, CO
| | - Kate M. Reynolds
- Rocky Mountain Poison & Drug Safety, Denver Health and Hospital Authority, Denver, CO
| | - Richard C. Dart
- Rocky Mountain Poison & Drug Safety, Denver Health and Hospital Authority, Denver, CO
| | - Kennon J. Heard
- University of Colorado School of Medicine, Department of Emergency Medicine, Aurora, CO
- Rocky Mountain Poison & Drug Safety, Denver Health and Hospital Authority, Denver, CO
| |
Collapse
|
5
|
Paloucek FP, Kanter MZ. It's Been a Long Journey: Do We Know Where We Are Going? J Med Toxicol 2021; 17:239-240. [PMID: 33884557 DOI: 10.1007/s13181-021-00843-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Frank P Paloucek
- Department of Pharmacy Practice, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL, 60612, USA.
| | - Michele Zell Kanter
- Toxikon Consortium, Division of Toxicology, Department of Emergency Medicine, Cook County Health, 1950 West Polk Street, 7th floor, Chicago, IL, 60612, USA
| |
Collapse
|