1
|
Rasuli N, Riahi H, Shariatmadari Z, Nohooji MG, Dehestani A, MehrabanJoubani P. Growth enhancement, metabolic profile improvement, and DXR and TPS2 gene expression changes in Thymus vulgaris L. by cyanobacterial inoculation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5751-5763. [PMID: 38381096 DOI: 10.1002/jsfa.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND In recent decades cyanobacterial species have attracted research attention as potential sources of new biostimulants. In this study, the biostimulant effects of five cyanobacterial suspensions on the growth and essential oil composition of Thymus vulgaris L. were evaluated. The expression of key genes involved in the biosynthesis of thymol and carvacrol, such as DXR and TPS2, were investigated. RESULTS A pot culture experiment revealed that cyanobacterial application significantly improved T. vulgaris L. growth indices, including plant height, dry and fresh weight, leaf and flower number, leaf area, and photosynthetic pigment content. Total phenol and flavonoid content in inoculated plants also showed a significant increase compared with the control. Anabaena torulosa ISB213 inoculation significantly increased root and shoot biomass by about 65.38% and 92.98% compared with the control, respectively. Nostoc calcicola ISB215 inoculation resulted in the highest amount of essential oil accumulation (18.08 ± 0.62) in T. vulgaris leaves, by about 72.19% compared with the control (10.5 ± 0.50%). Interestingly, the amount of limonene in the Nostoc ellipsosporum ISB217 treatment (1.67%) increased significantly compared with the control and other treatments. The highest expression rates of DXR and TPS2 genes were observed in the treatment of N. ellipsosporum ISB217, with 5.92-fold and 5.22-fold increases over the control, respectively. CONCLUSION This research revealed the potential of the cyanobacteria that were studied as promising biostimulants to increase the production of biomass and secondary metabolites of T. vulgaris L., which could be a suitable alternative to chemical fertilizers. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nasim Rasuli
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hossein Riahi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zeinab Shariatmadari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Ali Dehestani
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Pooyan MehrabanJoubani
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
2
|
Anwar F, Mahrye, Khan R, Qadir R, Saadi S, Gruczynska-Sekowska E, Saari N, Hossain Brishti F. Exploring the Biochemical and Nutra-Pharmaceutical Prospects of Some Thymus Species - A Review. Chem Biodivers 2024; 21:e202400500. [PMID: 38719739 DOI: 10.1002/cbdv.202400500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024]
Abstract
The Thymus genus includes various medicinal and aromatic species, cultivated worldwide for their unique medicinal and economic value. Besides, their conventional use as a culinary flavoring agent, Thymus species are well-known for their diverse biological effects, such as antioxidant, anti-fungal, anti-bacterial, anti-viral, anti-tumor, anti-inflammatory, anti-cancer, and anti-hypertensive properties. Hence, they are used in the treatment of fever, colds, and digestive and cardiovascular diseases. The pharmaceutical significance of Thymus plants is due to their high levels of bioactive components such as natural terpenoid phenol derivatives (p-cymene, carvacrol, thymol, geraniol), flavonoids, alkaloids, and phenolic acids. This review examines the phytochemicals, biological properties, functional food, and nutraceutical attributes of some important Thymus species, with a specific focus on their potential uses in the nutra-pharmaceutical industries. Furthermore, the review provides an insight into the mechanisms of biological activities of key phytochemicals of Thymus species exploring their potential for the development of novel natural drugs.
Collapse
Affiliation(s)
- Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Mahrye
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Rahman Qadir
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA, Universitédes Frères Mentouri Constantine 1, Route de Ain El Bey-Constantine, Algeria
- Laboratoire de Génie Agro-Alimentaire (GeniAAl), INATAA, Université Frères Mentouri Constantine 1 UFC1, Route de Ain, El Bey-Constantine, Algeria
| | - Eliza Gruczynska-Sekowska
- Institute of Food Sciences, Department of Chemistry, Warsaw University of Life Sciences, Nowoursynowska 159 C, PL-02-776, Warsaw, Poland
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Fatema Hossain Brishti
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Ramchoun M, Khouya T, Harnafi H, Alem C, Benlyas M, Simmet T, Ouguerram K, Amrani S. Effect of polyphenol, flavonoid, and saponin fractions from Thymus atlanticus on acute and chronic hyperlipidemia in mice. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00097-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Background
Thymus atlanticus is an endemic plant of the Mediterranean region, which has been used in the Moroccan mountain area to treat several diseases. This study aimed to investigate the effect of polyphenol, flavonoid, and saponin fractions derived from this plant on acute and chronic hyperlipidemia in male albino mice.
Results
The results indicated that the injection of Triton WR-1339 (20 mg/100 g body weight (B.wt.)) and 6-week administration of a high-fat diet (which is an 81.8% standard diet supplemented with 2% cholesterol, 16% lard, and 0.2% cholic acid) significantly increased plasma total cholesterol, triglycerides and low-density lipoprotein cholesterol (LDL-C), but did not affect high-density lipoprotein cholesterol (HDL-C) levels in mice. Administration of a single dose (2 mg/kg B.wt.) of polyphenol, flavonoid, or saponin fractions significantly suppressed the effect of Triton injection on plasma total cholesterol, triglycerides, and LDL-C. In addition, the supplementation of the high-fat diet with polyphenol fraction (2 mg/kg B.wt./day) prevented the increase of total cholesterol, triglycerides, and LDL-C, and effectively increased HDL-C level when compared to mice feeding only the high-fat diet.
Conclusion
In conclusion, phenolic compounds from Thymus atlanticus possess a significant hypocholesterolemic and hypotriglyceridemic effects and, therefore, could have an important role in the management of dyslipidemia.
Collapse
|
4
|
Antimicrobial Importance of Medicinal Plants in Nigeria. ScientificWorldJournal 2020; 2020:7059323. [PMID: 33029108 PMCID: PMC7528132 DOI: 10.1155/2020/7059323] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/10/2020] [Accepted: 09/09/2020] [Indexed: 01/26/2023] Open
Abstract
Despite the success of antibiotic discovery, infectious diseases remain the second leading source of death worldwide, while the resistance to antibiotics is among the significant problems in the twenty-first century. Medicinal plants are very rich in phytochemicals which can be structurally optimized and processed into new drugs. Nigeria enjoys a diverse collection of medicinal plants, and joint research has ascertained the efficacy of these plants. Plants such as guava (Psidium guajava), ginger (Zingiber officinale), neem (Azadirachta indica), and moringa (Moringa oleifera) have been found to exhibit broad range of antimicrobial activities. Studies on Nigerian plants have shown that they contain alkaloids, polyphenols, terpenes, glycosides, and others with possible therapeutic potentials. The antimicrobial activities of some new compounds such as alloeudesmenol, hanocokinoside, orosunol, and 8-demethylorosunol, identified from medicinal plants in Nigeria, are not yet explored. Further investigation and optimization of these compounds will facilitate the development of new sets of pharmacologically acceptable antimicrobial agents. This review study revealed the efficacy of medicinal plants as an alternative therapy in combating and curtailing the development and survival of multidrug-resistant pathogens coupled with the toxic effects of some antibiotics. Due to enormous therapeutic possibilities buried in medicinal plants, there is a need for more research into unique fingerprints and novel compounds that can provide cure to the neglected tropical diseases (NTDs) of humans and animals facing Africa, especially Nigeria.
Collapse
|