1
|
Xue H, Gao Y, Shi Z, Gao H, Xie K, Tan J. Interactions between polyphenols and polysaccharides/proteins: Mechanisms, effect factors, and physicochemical and functional properties: A review. Int J Biol Macromol 2025; 309:142793. [PMID: 40194573 DOI: 10.1016/j.ijbiomac.2025.142793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Polyphenols have attracted much attention in the food industry and nutrition because of their unique biological activities. However, the health benefits of polyphenols are compromised due to their structural instability and sensitivity to the external environment. The interaction between polyphenols and polysaccharides/proteins largely determines the stability and functional characteristics of polyphenols in food processing and storage. Hence, this topic has attracted widespread attention in recent years. This review initially outlines the basic properties of polyphenols and their applications in food. Subsequently, the interaction mechanisms between polyphenols and polysaccharides/proteins are discussed in detail including non-covalent bonding, covalent modification, and conformational changes. These interactions can display profound impacts on the nutritional value, taste, stability, and safety of food. Additionally, this article also systematically reviews the influencing factors (type, concentration, temperature, pH, and other factors) of interaction between polyphenols and proteins/polysaccharides. Finally, this paper also summarizes systematically the effects of the interaction between polyphenols and polysaccharides/proteins on the physicochemical and functional properties of polyphenols/proteins. The findings provide prospects for the application of composite materials in food preservation, functional food development, and nanocarrier development, which can provide theoretical references for the in-depth development of polyphenols in the food industry.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zhangmeng Shi
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, No. 88 East Fuxing Road, Yuetang District, Xiangtan, 411100, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
2
|
Li Z, Tian J, Tian Q, Zang Z, Wang Y, Jiang Q, Chen Y, Yang B, Yang S, Yang Y, Li B. Improved uptake of anthocyanins-loaded nanoparticles based on phenolic acid-grafted zein and lecithin. Food Chem 2025; 466:142235. [PMID: 39612853 DOI: 10.1016/j.foodchem.2024.142235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Anthocyanins (ACNs) exhibit various physiological activities but have low bioavailability. This study aimed to improve cellular uptake and permeability of ACNs by utilizing phenolic acids grafted zein and lecithin (ZLAs) as the carrier. With the highest grafting rate achieved in rosmarinic acid (RA)-zein at 39.79 ± 0.40 % using alkali treatment, the grafted zein samples were characterized through spectroscopy, NMR, and analysis of physicochemical properties. Ferulic acid (FA)-ZLAs exhibited the smallest particle size (69.72 ± 0.50 nm) and PDI value of 0.206 ± 0.012. Multi-spectroscopy indicated hydrogen bonding and hydrophobic forces were the major forces to stabilize ACNs. Moreover, carrier binding including electrostatic interaction effectively enhanced processing, thermal degradation, color, and gastrointestinal stability. In Caco-2 monolayers, FA-ZLAs significantly improved cellular transport efficiency, resulting in up to a 1.9-fold enhancement. RA-ZLAs exhibited the strongest antioxidant activity. This work proposes a feasible strategy for stabilizing ACNs and propelling their use in dietary supplements.
Collapse
Affiliation(s)
- Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning 110866, China
| | - Qilin Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning 110866, China
| | - Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning 110866, China
| | - Yumeng Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning 110866, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Baoru Yang
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., No.20 Xinyangguang Road, Jiyang street, Zhuji, Zhejiang, 311800, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., No.20 Xinyangguang Road, Jiyang street, Zhuji, Zhejiang, 311800, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning 110866, China.
| |
Collapse
|
3
|
Guo X, He L, Sun J, Ye H, Yin C, Zhang W, Han H, Jin W. Exploring the Potential of Anthocyanins for Repairing Photoaged Skin: A Comprehensive Review. Foods 2024; 13:3506. [PMID: 39517290 PMCID: PMC11545459 DOI: 10.3390/foods13213506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Long-term exposure to ultraviolet (UV) rays can result in skin photoaging, which is primarily characterized by dryness, roughness, pigmentation, and a loss of elasticity. However, the clinical drugs commonly employed to treat photoaged skin often induce adverse effects on the skin. Anthocyanins (ACNs) are water-soluble pigments occurring abundantly in various flowers, fruits, vegetables, and grains and exhibiting a range of biological activities. Studies have demonstrated that ACNs contribute to the repair of photoaged skin due to their diverse biological characteristics and minimal side effects. Evidence suggests that the stability of ACNs can be enhanced through encapsulation or combination with other substances to improve their bioavailability and permeability, ultimately augmenting their efficacy in repairing photoaged skin. A growing body of research utilizing cell lines, animal models, and clinical studies has produced compelling data demonstrating that ACNs mitigate skin photoaging by reducing oxidative stress, alleviating the inflammatory response, improving collagen synthesis, alleviating DNA damage, and inhibiting pigmentation. This review introduces sources of ACNs while systematically summarizing their application forms as well as mechanisms for repairing photoaged skin. Additionally, it explores the potential role of ACNs in developing functional foods. These findings may provide valuable insight into using ACNs as promising candidates for developing functional products aimed at repairing photoaged skin.
Collapse
Affiliation(s)
- Xinmiao Guo
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Linlin He
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Jiaqiang Sun
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Hua Ye
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Cuiyuan Yin
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Weiping Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
| | - Hao Han
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Black Organic Food Engineering Center, Shaanxi University of Technology, Hanzhong 723001, China
| | - Wengang Jin
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
4
|
Nunes AR, Costa EC, Alves G, Silva LR. Nanoformulations for the Delivery of Dietary Anthocyanins for the Prevention and Treatment of Diabetes Mellitus and Its Complications. Pharmaceuticals (Basel) 2023; 16:ph16050736. [PMID: 37242519 DOI: 10.3390/ph16050736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by abnormal blood glucose levels-hyperglycemia, caused by a lack of insulin secretion, impaired insulin action, or a combination of both. The incidence of DM is increasing, resulting in billions of dollars in annual healthcare costs worldwide. Current therapeutics aim to control hyperglycemia and reduce blood glucose levels to normal. However, most modern drugs have numerous side effects, some of which cause severe kidney and liver problems. On the other hand, natural compounds rich in anthocyanidins (cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin) have also been used for the prevention and treatment of DM. However, lack of standardization, poor stability, unpleasant taste, and decreased absorption leading to low bioavailability have hindered the application of anthocyanins as therapeutics. Therefore, nanotechnology has been used for more successful delivery of these bioactive compounds. This review summarizes the potential of anthocyanins for the prevention and treatment of DM and its complications, as well as the strategies and advances in the delivery of anthocyanins using nanoformulations.
Collapse
Affiliation(s)
- Ana R Nunes
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC-Centre for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Elisabete C Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís R Silva
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI-IPG-Research Unit for Inland Development, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-554 Guarda, Portugal
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II-Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| |
Collapse
|
5
|
Fu W, Li S, Helmick H, Hamaker BR, Kokini JL, Reddivari L. Complexation with Polysaccharides Enhances the Stability of Isolated Anthocyanins. Foods 2023; 12:foods12091846. [PMID: 37174384 PMCID: PMC10178255 DOI: 10.3390/foods12091846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Isolated anthocyanins have limited colonic bioavailability due to their instability as free forms. Thus, many methods have been fabricated to increase the stability of anthocyanins. Complexation, encapsulation, and co-pigmentation with other pigments, proteins, metal ions, and carbohydrates have been reported to improve the stability and bioavailability of anthocyanins. In this study, anthocyanins extracted from purple potatoes were complexed with four different polysaccharides and their mixture. The anthocyanin-polysaccharide complexes were characterized using a zeta potential analyzer, particle size analyzer, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Complexes were subjected to simulated digestion for assessing the stability of anthocyanins. Furthermore, complexes were subjected to different pH conditions and incubated at high temperatures to monitor color changes. A Caco-2 cell monolayer was used to evaluate the colonic concentrations of anthocyanins. In addition, the bioactivity of complexes was assessed using LPS-treated Caco-2 cell monolayer. Results show that pectin had the best complexation capacity with anthocyanins. The surface morphology of the anthocyanin-pectin complex (APC) was changed after complexation. APC was more resistant to the simulated upper gastrointestinal digestion, and high pH and temperature conditions for a longer duration. Furthermore, APC restored the lipopolysaccharide (LPS)-induced high cell permeability compared to isolated anthocyanins. In conclusion, complexation with pectin increased the stability and colonic bioavailability and the activity of anthocyanins.
Collapse
Affiliation(s)
- Wenyi Fu
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Shiyu Li
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Harrison Helmick
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Bruce R Hamaker
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Jozef L Kokini
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Impact of in vitro gastrointestinal digestion on rabbiteye blueberry anthocyanins and their absorption efficiency in Caco-2 cells. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Shen Y, Zhang N, Tian J, Xin G, Liu L, Sun X, Li B. Advanced approaches for improving bioavailability and controlled release of anthocyanins. J Control Release 2021; 341:285-299. [PMID: 34822910 DOI: 10.1016/j.jconrel.2021.11.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Anthocyanins are a group of phytochemicals responsible for the purple or red color of plants. Additionally, they are recognized to have health promoting functions including anti-cardiovascular, anti-thrombotic, anti-diabetic, antimicrobial, neuroprotective, and visual protective effect as well as anti-cancer activities. Thus, consumption of anthocyanin supplement or anthocyanin-rich foods has been recommended to prevent the risk of development of chronic diseases. However, the low stability and bioavailability of anthocyanins limit the efficacy and distribution of anthocyanins in human body. Thus, strategies to achieve target site-local delivery with good bioavailability and controlled release rate are necessary. This review introduced and discussed the latest advanced techniques of designing lipid-based, polysaccharide-based and protein-based complexes, nano-encapsulation and exosome to overcome the limitation of anthocyanins. The improved bioavailability and controlled release of anthocyanins have great significance for gastrointestinal tract absorption, transepithelial transportation and cellular uptake. The techniques of applying different biocompatible materials and modifying the solubility of anthocyanins complex could achieve target site-local delivery with negligible degradation and good bioavailability in human body.
Collapse
Affiliation(s)
- Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Ning Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Horticulture Germplasm Excavation and Innovative Utilization Qinhuangdao, Hebei, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Ling Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China.
| |
Collapse
|