1
|
de Sousa Araujo AC, Coimbra Pereira A, Gomes RMM, Buitrago Ramirez JR, da Silva Noda K, Santos LG, Latorres JM, Ramos DF, Monserrat JM, Martins VG. Protein hydrolysates derived from superworm (Zophobas morio): Composition, bioactivity, and techno-functional properties. Int J Biol Macromol 2025; 295:139668. [PMID: 39793808 DOI: 10.1016/j.ijbiomac.2025.139668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
This study aimed to produce protein hydrolysates from superworm (Zophobas morio) flour using the enzymes alcalase (HA), protamex (HP), or flavourzyme (HF), and to characterize their nutritional composition, techno-functional properties, bioactive capacity, and bioaccessibility index. The enzymatic process increased the total amino acid and crude protein contents of the hydrolysates by approximately 36 % and 46 %, respectively, generating better foaming capacity, oil retention, and emulsification capacity, when compared to raw flour. Although 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical capture was similar between the hydrolysates, HA (1479,66 μM FeSO4/g) and HP (1514,66 μM FeSO4/g) showed greater antimicrobial and iron reducing power (FRAP) activity, while HF has a higher scavenging efficiency for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (27.53 %). The best antimicrobial activity was observed for HA against Vibrio corallilyticus (400 mg/mL), and HP showed a better antioxidant response scavenging for DPPH radical. The antioxidant capacity against ABTS radical after in vitro simulation of gastrointestinal digestion (GID) was as follows: HA (79.07 ± 1.53 %), HP (74.65 ± 5.85 %), and HF (57.95 ± 8.31 %). Therefore, insect flour is a promising ingredient for the production of protein hydrolysates and their application in animal and human feeds.
Collapse
Affiliation(s)
- Alan Carvalho de Sousa Araujo
- Laboratory of Functional Biochemistry of Aquatic Organisms, Institute of Oceanography, Federal University of Rio Grande, FURG, Rio Grande, RS 96201-900, Brazil; Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, FURG, Av. Itália, Km 08, 96203-900, Brazil; Graduate Program in Aquaculture, Federal University of Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS 96201-900, Brazil.
| | - Andressa Coimbra Pereira
- Laboratory of Functional Biochemistry of Aquatic Organisms, Institute of Oceanography, Federal University of Rio Grande, FURG, Rio Grande, RS 96201-900, Brazil; Graduate Program in Aquaculture, Federal University of Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS 96201-900, Brazil
| | - Robson Matheus Marreiro Gomes
- Laboratory of Functional Biochemistry of Aquatic Organisms, Institute of Oceanography, Federal University of Rio Grande, FURG, Rio Grande, RS 96201-900, Brazil; Graduate Program in Aquaculture, Federal University of Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS 96201-900, Brazil
| | - Juan Rafael Buitrago Ramirez
- Laboratory of Functional Biochemistry of Aquatic Organisms, Institute of Oceanography, Federal University of Rio Grande, FURG, Rio Grande, RS 96201-900, Brazil; Graduate Program in Aquaculture, Federal University of Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS 96201-900, Brazil
| | - Karoline da Silva Noda
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, FURG, Av. Itália, Km 08, 96203-900, Brazil
| | - Luan Gustavo Santos
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, FURG, Av. Itália, Km 08, 96203-900, Brazil
| | - Juliana Machado Latorres
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, FURG, Av. Itália, Km 08, 96203-900, Brazil
| | - Daniela Fernandes Ramos
- Center for the Development of New Drugs (NUDEFA), Federal University of Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - José María Monserrat
- Laboratory of Functional Biochemistry of Aquatic Organisms, Institute of Oceanography, Federal University of Rio Grande, FURG, Rio Grande, RS 96201-900, Brazil; Institute of Biological Sciences, Federal University of Rio Grande, - FURG, Av. Itália, Km 08, 96201-900, Brazil; Graduate Program in Aquaculture, Federal University of Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS 96201-900, Brazil.
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, FURG, Av. Itália, Km 08, 96203-900, Brazil; Graduate Program in Aquaculture, Federal University of Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS 96201-900, Brazil
| |
Collapse
|
2
|
Kotsoni E, Daukšas E, Hansen Aas G, Rustad T, Tiwari BK, Lammi C, Bollati C, Fanzaga M, d'Adduzio L, Stangeland JK, Cropotova J. Antioxidant Activity and DPP-IV Inhibitory Effect of Fish Protein Hydrolysates Obtained from High-Pressure Pretreated Mixture of Rainbow Trout ( Oncorhynchus mykiss) and Atlantic Salmon ( Salmo salar) Rest Raw Material. Mar Drugs 2024; 22:568. [PMID: 39728142 DOI: 10.3390/md22120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
The use of fish rest raw material for the production of fish protein hydrolysates (FPH) through enzymatic hydrolysis has received significant interest in recent decades. Peptides derived from fish proteins are known for their enhanced bioactivity which is mainly influenced by their molecular weight. Studies have shown that novel technologies, such as high-pressure processing (HPP), can effectively modify protein structures leading to increased biological activity. This study investigated the effect of various HPP conditions on the molecular weight distribution, antioxidant activity, and dipeptidyl-peptidase IV (DPP-IV) inhibitory effect of FPH derived from a mixture of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) rest raw material. Six different treatments were applied to the samples before enzymatic hydrolysis; 200 MPa × 4 min, 200 MPa × 8 min, 400 MPa × 4 min, 400 MPa × 8 min, 600 MPa × 4 min, and 600 MPa × 8 min. The antioxidant and DPP-IV inhibitory effects of the extracted FPH were measured both in vitro and at cellular level utilizing human intestinal Caco-2 cells. The results indicated that low and moderate pressures (200 and 400 MPa) increased the proportion of larger peptides (2-5 kDa) in the obtained FPH, while treatment at 600 MPa × 4 min resulted in a higher proportion of smaller peptides (1-2 kDa). Furthermore, HPP led to the formation of peptides that demonstrated increased antioxidant activity in Caco-2 cells compared to the control, whereas their potential antidiabetic activity remained unaffected.
Collapse
Affiliation(s)
- Elissavet Kotsoni
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6009 Ålesund, Norway
| | - Egidijus Daukšas
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6009 Ålesund, Norway
| | - Grete Hansen Aas
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6009 Ålesund, Norway
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Brijesh K Tiwari
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | - Melissa Fanzaga
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | - Lorenza d'Adduzio
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | | | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6009 Ålesund, Norway
| |
Collapse
|
3
|
Pokorski P, He R, Kurek MA. Advancing protein hydrolysis and phytosterol encapsulation: Emerging trends and innovations in protein-based microencapsulation techniques - A comprehensive review. Food Res Int 2024; 196:115012. [PMID: 39614470 DOI: 10.1016/j.foodres.2024.115012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/29/2024] [Accepted: 08/31/2024] [Indexed: 12/01/2024]
Abstract
Phytosterols represent a diverse and complex category of lipophilic bioactive compounds, exhibiting excellent pro-healthy properties. However, their consumption in daily diets is insufficient, and their application in food production is hindered by challenges such as low water solubility, high reactivity, and rapid degradation. The adoption of different protein or their structural modification as hydrolysates as wall material into microencapsulation techniques can be associated with improved solubility, enhanced bioaccessibility, increased bioavailability, and an extension of shelf life. This contribution provides an overview of advancements in modifying functional properties through various protein isolation methods and structural changes resulting from enzymatic hydrolysis. Additionally, the paper considers the state of the art in the utilization of various techniques and the composition of wall material in the encapsulation of phytosterols and other common lipophilic phytochemicals incorporated into delivery systems. Protein isolates obtained through novel methods of extraction may be characterized by an enhancement of their functional properties, which is crucial for the microencapsulation process. It entails not only recognizing their role as protective barriers for core materials against environmental conditions but also acknowledging their potential health-promoting attributes. These attributes encompass antioxidant properties and enhanced functional characteristics compared to native proteins. Moreover, the exploration of protein hydrolysates as versatile wall materials holds significant promise. These hydrolysates offer exceptional protective features for core materials, extending beyond mere environmental shielding. The envisioned impact extends beyond conventional delivery systems, offering transformative potential for the future of drug delivery and nutraceutical formulations.
Collapse
Affiliation(s)
- Patryk Pokorski
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Ronghai He
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Marcin A Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
| |
Collapse
|
4
|
Saputra I, Lee YN, Fotedar R. The Effect of Supplementation of Fish Protein Hydrolysate to the BSF-Based Aquafeed on the Growth, Survival, Fatty Acids, and Histopathology of Juvenile Lobster ( Panulirus ornatus). AQUACULTURE NUTRITION 2024; 2024:8579991. [PMID: 39555534 PMCID: PMC11219206 DOI: 10.1155/2024/8579991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 11/19/2024]
Abstract
The present study aims to evaluate the effect of liquid fish protein hydrolysate (FPH) following fishmeal substitution with full-fat and defatted BSF (black soldier fly, Hermetia illucens) meal in the feeds of juvenile ornate spiny lobster, Panulirus ornatus. The physiological aspects of juvenile lobsters including growth, fatty acids profile, and histopathology were observed. Six isoenergetic experimental feeds having a protein-to-energy ratio of 26 CP mg kJ-1 were formulated with the substitution of fishmeal at 25% using liquid FPH, full-fat BSF (FBSF), defatted BSF (DBSF), and their combination. The specific growth rate, final body weight, final total length, and length increment of juvenile lobsters (initial weight was 0.21 ± 0.01 g and total length was 20.53 ± 0.12 mm) were significantly affected by the fishmeal substitution (P < 0.05) and improved with the addition of liquid FPH in the feeds containing FBSF and DBSF. The whole body proximate analysis showed that the liquid FPH to the feeds containing DBSF increased the ash and protein content significantly (P < 0.05). The total monounsaturated fatty acids (∑MUFA), saturated fatty acids (∑SFA), and omega 9 fatty acids (∑n-9 FA) of juvenile lobsters' whole bodies fed with dietary DBSF and FPH supplementation were significantly higher than those of others (P < 0.05). The histopathological analysis indicated that the villus size and the muscle thickness in the intestine were not significantly affected by FPH supplementation. However, the hepatopancreas histopathology indicated the presence of B-cells and R-cells in the juvenile lobsters fed with FPH-supplemented feeds. The present results suggested the supplementation of liquid FPH to the formulated feed with FBSF and DBSF for juvenile lobsters can improve the lobsters' growth and fatty acids availability.
Collapse
Affiliation(s)
- Ishaaq Saputra
- Faculty of Engineering and SciencesCurtin University, CDT 250, Miri Sarawak 98009, Malaysia
| | - Yih Nin Lee
- Faculty of Engineering and SciencesCurtin University, CDT 250, Miri Sarawak 98009, Malaysia
| | - Ravi Fotedar
- School of Molecular and Life SciencesCurtin University, Kent Street, Bentley 6102, WA, Australia
| |
Collapse
|
5
|
Guilherme-Fernandes J, Aires T, Fonseca AJM, Yergaliyev T, Camarinha-Silva A, Lima SAC, Maia MRG, Cabrita ARJ. Squid meal and shrimp hydrolysate as novel protein sources for dog food. Front Vet Sci 2024; 11:1360939. [PMID: 38450029 PMCID: PMC10915000 DOI: 10.3389/fvets.2024.1360939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
The world's growing pet population is raising sustainability and environmental concerns for the petfood industry. Protein-rich marine by-products might contribute to mitigating negative environmental effects, decreasing waste, and improving economic efficiency. The present study evaluated two marine by-products, squid meal and shrimp hydrolysate, as novel protein sources for dog feeding. Along with the analysis of chemical composition and antioxidant activity, palatability was evaluated by comparing a commercial diet (basal diet) and diets with the inclusion of 150 g kg-1 of squid meal or shrimp hydrolysate using 12 Beagle dogs (2.2 ± 0.03 years). Two in vivo digestibility trials were conducted with six dogs, three experimental periods (10 days each) and three dietary inclusion levels (50, 100 and 150 g kg-1) of squid meal or shrimp hydrolysate in place of the basal diet to evaluate effects of inclusion level on apparent total tract digestibility (ATTD), metabolizable energy content, fecal characteristics, metabolites, and microbiota. Both protein sources presented higher protein and methionine contents than ingredients traditionally used in dog food formulation. Shrimp hydrolysate showed higher antioxidant activity than squid meal. First approach and taste were not affected by the inclusion of protein sources, but animals showed a preference for the basal diet. Effects on nutrient intake reflected the chemical composition of diets, and fecal output and characteristics were not affected by the increasing inclusion levels of both protein sources. The higher ATTD of dry matter, most nutrients and energy of diets with the inclusion of both by-products when compared to the basal diet, suggests their potential to be included in highly digestible diets for dogs. Although not affected by the inclusion level of protein sources, when compared to the basal diet, the inclusion of squid meal decreased butyrate concentration and shrimp hydrolysate increased all volatile fatty acids, except butyrate. Fecal microbiota was not affected by squid meal inclusion, whereas inclusion levels of shrimp hydrolysate significantly affected abundances of Oscillosperaceae (UCG-005), Firmicutes and Lactobacillus. Overall, results suggest that squid meal and shrimp hydrolysate constitute novel and promising protein sources for dog food, but further research is needed to fully evaluate their functional value.
Collapse
Affiliation(s)
- Joana Guilherme-Fernandes
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Tiago Aires
- SORGAL, Sociedade de Óleos e Rações S.A., Lugar da Pardala, S. João de Ovar, Portugal
| | - António J. M. Fonseca
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Timur Yergaliyev
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Amélia Camarinha-Silva
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Sofia A. C. Lima
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Margarida R. G. Maia
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ana R. J. Cabrita
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Saiwong S, Autsavapromporn N, Siriwoharn T, Techapun C, Wangtueai S. Enzymatic Hydrolysis Optimization for Preparation of Sea Cucumber ( Holothuria scabra) Hydrolysate with an Antiproliferative Effect on the HepG2 Liver Cancer Cell Line and Antioxidant Properties. Int J Mol Sci 2023; 24:ijms24119491. [PMID: 37298441 DOI: 10.3390/ijms24119491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The sea cucumber body wall was subjected to enzymatic hydrolysis using papain. The relationship between the enzyme concentration (1-5% w/w protein weight) and hydrolysis time (60-360 min) and the degree of hydrolysis (DH), yield, antioxidant activities, and antiproliferative activity in a HepG2 liver cancer cell line was determined. The surface response methodology showed that the optimum conditions for the enzymatic hydrolysis of sea cucumber were a hydrolysis time of 360 min and 4.3% papain. Under these conditions, a 12.1% yield, 74.52% DH, 89.74% DPPH scavenging activity, 74.92% ABTS scavenging activity, 39.42% H2O2 scavenging activity, 88.71% hydroxyl radical scavenging activity, and 9.89% HepG2 liver cancer cell viability were obtained. The hydrolysate was produced under optimum conditions and characterized in terms of its antiproliferative effect on the HepG2 liver cancer cell line.
Collapse
Affiliation(s)
- Supansa Saiwong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Charin Techapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand
| |
Collapse
|
7
|
Chen YT, Tu CW, Hou CY, Chen YA, Xu RQ, Kuo CH, Wu CC, Hsieh SL. Evaluation of egg white hydrolysates on the hepatoprotective effect in vitro and in vivo. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1633-1641. [PMID: 37033317 PMCID: PMC10076489 DOI: 10.1007/s13197-023-05706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
The small molecule characteristics and nutritional value of egg white hydrolysates have been widely used. In the present study, in vitro and in vivo models were used to investigate the hepatoprotective effect of egg protein hydrolysate (EWH) by regulating the expression of antioxidant enzymes. The in vitro experiment results showed that 0.1, 0.5, and 1 mg/mL of EWH enhanced antioxidant activity in HepG2 cells by increased glutathione peroxidase (GPx) activity and reduced glutathione (GSH) levels. The in vivo experiment results showed that EWH (L) (38.5 mg/kg BW) and EWH (H) (385 mg/kg BW) alleviated carbon tetrachloride (CCl4)-induced hepatotoxicity in SD rats through reduced levels of serum aspartate aminotransferase (AST) alanine aminotransferase (ALT), and lipid peroxidation products malondialdehyde (MDA). In addition, EWH also ameliorates CCl4-induced hepatotoxicity in SD rats by increasing the antioxidant activity of GSH levels with a decrease in oxidized glutathione (GSSG) levels. Besides, EWH ameliorates liver tissue injuries by CCl4-induction. EWH has the highest glutamic acid in free amino acid composition, the second highest was aspartic acid, and the third was cystine, 204, 141, and 125 mg/100 g, respectively. These results suggest EWH has hepatoprotective potential through reduced lipid peroxidation products and enhanced antioxidant activity.
Collapse
Affiliation(s)
- Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Nanzih District, Kaohsiung City, 81157 Taiwan, R.O.C
| | - Chao-Wen Tu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Nanzih District, Kaohsiung City, 81157 Taiwan, R.O.C
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Nanzih District, Kaohsiung City, 81157 Taiwan, R.O.C
| | - Yu-An Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Nanzih District, Kaohsiung City, 81157 Taiwan, R.O.C
| | - Ruo-Qi Xu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Nanzih District, Kaohsiung City, 81157 Taiwan, R.O.C
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Nanzih District, Kaohsiung City, 81157 Taiwan, R.O.C
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung, 43301 Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Nanzih District, Kaohsiung City, 81157 Taiwan, R.O.C
| |
Collapse
|
8
|
Naghdi S, Rezaei M, Tabarsa M, Abdollahi M. Fish Protein Hydrolysate from Sulfated Polysaccharides Extraction Residue of Tuna Processing By-Products with Bioactive and Functional Properties. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200214. [PMID: 37020628 PMCID: PMC10069310 DOI: 10.1002/gch2.202200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Indexed: 06/19/2023]
Abstract
The ethanol-induced precipitation after enzymatic hydrolysis commonly used for sulfated polysaccharide extraction from marine resources wastes a large amount of proteins. Here, possible extraction of fish protein hydrolysates (FPH) from the ethanol residue of sulfated polysaccharide precipitation from head, bone, and skin of skipjack tuna is investigated. Antioxidant, antibacterial, angiotensin I-converting enzyme (ACE) inhibitory activities and functional properties of the recovered FPHs are also evaluated. A degree of hydrolysis of 40.93, 38.13, and 37.23 is achieved for FPH from head, bone, and skin, respectively. FPH from the head presents the highest antioxidant and ACE inhibitory activity as well as foam/emulsion capacity among all the FPHs. The FPHs are all able to inhibit three Gram-positive bacteria and three Gram-negative bacteria to varying degrees and have a water solubility >65%. Altogether, the results demonstrate great potential for recovery of bioactive/functional peptides from the residue of sulfated polysaccharide extraction process enabling efficient biorefining of aquatic resources.
Collapse
Affiliation(s)
- Shahab Naghdi
- Department of Seafood ProcessingFaculty of Marine SciencesTarbiat Modares UniversityP.O. Box 46414‐356NoorIran
| | - Masoud Rezaei
- Department of Seafood ProcessingFaculty of Marine SciencesTarbiat Modares UniversityP.O. Box 46414‐356NoorIran
| | - Mehdi Tabarsa
- Department of Seafood ProcessingFaculty of Marine SciencesTarbiat Modares UniversityP.O. Box 46414‐356NoorIran
| | - Mehdi Abdollahi
- Department of Life Sciences–Food and Nutrition ScienceChalmers University of TechnologyGothenburgSE 412 96Sweden
| |
Collapse
|
9
|
Ramakrishnan SR, Jeong CR, Park JW, Cho SS, Kim SJ. A review on the processing of functional proteins or peptides derived from fish by-products and their industrial applications. Heliyon 2023; 9:e14188. [PMID: 36938382 PMCID: PMC10015205 DOI: 10.1016/j.heliyon.2023.e14188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
To understand the production and characteristics of protein hydrolysates pertaining to individual fish species, we selected and analyzed the most important commercial fish species according to the market value based on the Statistics on International Exports of Fishery Commodities by Food and Agriculture Organization. Accordingly, salmon, shrimp, cod, tuna, squid, and herring are marine species with high global value. Peptides obtained from their by-products were predominant in hydrophobic amino acids such as alanine, phenylalanine, methionine, proline, valine, tyrosine, tryptophan, leucine, and isoleucine. Bioactive peptides are short with a length of 2-20 amino acids. They remain inactive when they are within their parent proteins. Low molecular weight (0.3-8 kDa) peptides from hydrolyzed protein are easily digestible, readily absorbed by the body and are water-soluble. The hydrophobic nature contributes to their bioactivity, which facilitates their interactions with the membrane lipid bilayers. Incomplete hydrolysis results in low yields of hydrophobic amino acids. The glycosylation type of the resulting peptide fragment determines the different applications of the hydrolysate. The degree of conservation of the glycosidic residues and the size of the peptides are influenced by the method used to generate these hydrolysates. Therefore, it is crucial to explore inexpensive novel methodologies to generate bioactive peptides. According to the current studies, a unified approach (in silico estimation coupled with peptidomics) can be used for the identification of novel peptides with diverse physiological and technological functions. From an industrial perspective, the reusability of immobilized enzymes and membrane separation techniques (e.g., ultrafiltration) on marine by-products can offer low operating costs and higher yield for large-scale production of bioactive peptides. This review summarizes the production processes and essential characteristics of protein hydrolysates from fish by-products and presents the advances in their application.
Collapse
Affiliation(s)
- Sudha Rani Ramakrishnan
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chae-Rim Jeong
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jin-Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
10
|
Naghdi S, Rezaei M, Tabarsa M, Abdollahi M. Parallel Extraction of Sulfated polysaccharides and Protein Hydrolysate from Skipjack Tuna Head and Their Bioactive and Functional Properties. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Bioactivity Evaluation of Peptide Fractions from Bighead Carp (Hypophthalmichthys nobilis) Using Alcalase and Hydrolytic Enzymes Extracted from Oncorhynchus mykiss and Their Potential to Develop the Edible Coats. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Leiva-Portilla D, Martínez R, Bernal C. Valorization of shrimp (Heterocarpus reedi) processing waste via enzymatic hydrolysis: Protein extractions, hydrolysates and antioxidant peptide fractions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Hamed F, Elgaoud I, Deracinois B, Flahaut C, Nedjar N, Barkia A. Production of hydrolysates and peptides from a new protein source: Diplodus annularis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Response Surface Modeling and Optimization of Enzymolysis Parameters for the In Vitro Antidiabetic Activities of Peanut Protein Hydrolysates Prepared Using Two Proteases. Foods 2022; 11:3303. [PMCID: PMC9602261 DOI: 10.3390/foods11203303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Optimization of the enzymolysis process for preparing peanut protein hydrolysates using alcalase and trypsin was performed by employing the central composite design (CCD) of response surface methodology (RSM). The independent variables were solid-to-liquid ratio (S/L), enzyme-to-substrate ratio (E/S), pH, and reaction temperature, while the response variables were degree of hydrolysate (DH), α-amylase, and α-glucosidase inhibitory activity. The highest DH (22.84% and 14.63%), α-amylase inhibition (56.78% and 40.80%), and α-glucosidase inhibition (86.37% and 86.51%) were obtained under optimal conditions, which were S/L of 1:26.22 and 1:30 w/v, E/S of 6% and 5.67%, pH of 8.41 and 8.56, and temperature of 56.18 °C and 58.75 °C at 3 h using alcalase (AH) and trypsin (TH), respectively. Molecular weight distributions of peanut protein hydrolysates were characterized by SDS-PAGE, which were mostly ˂10 kDa for both hydrolysates. Lyophilized AH and TH had IC50 values of 6.77 and 5.86 mg/mL for α-amylase inhibitory activity, and 6.28 and 5.64 mg/mL for α-glucosidase inhibitory activity. The IC50 of AH and TH against DPPH radical was achieved at 4.10 and 3.20 mg/mL and against ABTS radical at 2.71 and 2.32 mg/mL, respectively. The obtained hydrolysates with antidiabetic activity could be utilized as natural alternatives to synthetic antidiabetics, particularly in food and pharmaceutical products.
Collapse
|
15
|
Rebouças Júnior JSA, Martins VG, Prentice-Hernández C, Monsserrat JM, Tesser MB, Latorres JM. Enzymatic Hydrolysis of Pacific White Shrimp Residue ( Litopenaeus vannamei) with Ultrasound Aid. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2132125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- José Stênio Aragão Rebouças Júnior
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Carlos Prentice-Hernández
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - José Maria Monsserrat
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
- Institute of Biological Sciences (ICB), Federal University of Rio Grande. Rio Grande, Rio Grande, RS, Brazil
| | - Marcelo Borges Tesser
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Juliana Machado Latorres
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
16
|
Rana S, Singh A, Surasani VKR, Kapoor S, Desai A, Kumar S. Fish processing waste: a novel source of
non‐conventional
functional proteins. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sudha Rana
- Department of Food Science and Technology Punjab Agriculture University Ludhiana Punjab 141004 India
| | - Arashdeep Singh
- Department of Food Science and Technology Punjab Agriculture University Ludhiana Punjab 141004 India
| | - Vijay Kumar Reddy Surasani
- College of Fisheries Guru Angad Dev Veterinary and Animal Sciences University Ludhiana Punjab 141004 India
| | - Swati Kapoor
- Department of Food Science and Technology Punjab Agriculture University Ludhiana Punjab 141004 India
| | - Ajay Desai
- College of Fisheries Dr BS Konkan Krishi Vidyapeeth Dapoli Maharashtra 415629 India
| | - Siddhnath Kumar
- College of Fisheries Guru Angad Dev Veterinary and Animal Sciences University Ludhiana Punjab 141004 India
| |
Collapse
|
17
|
Noman A, Wang Y, Zhang C, Yin L, Abed SM. Antioxidant Activities of Optimized Enzymatic Protein Hydrolysates from Hybrid Sturgeon ( Huso dauricus × Acipenser schrenckii) Prepared Using Two Proteases. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2120377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Anwar Noman
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Agricultural Engineering, Faculty of Agriculture, Foods and Environment, Sana’a University, Sana’a, Yemen
| | - Yuxia Wang
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Chao Zhang
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Liguo Yin
- Key Laboratory of Fermentation Resource and Application in Sichuan Higher Education, Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Sherif M. Abed
- Food and Dairy Science and Technology Department, Faculty of Environmental Agricultural Science, Arish University, North Sinai, Egypt
| |
Collapse
|
18
|
Czelej M, Garbacz K, Czernecki T, Wawrzykowski J, Waśko A. Protein Hydrolysates Derived from Animals and Plants—A Review of Production Methods and Antioxidant Activity. Foods 2022; 11:foods11131953. [PMID: 35804767 PMCID: PMC9266099 DOI: 10.3390/foods11131953] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023] Open
Abstract
There is currently considerable interest on the use of animal, plant, and fungal sources in the production of bioactive peptides, as evidenced by the substantial body of research on the topic. Such sources provide cheap and environmentally friendly material as it often includes waste and by-products. Enzymatic hydrolysis is considered an efficient method of obtaining peptides capable of antioxidant activity. Those properties have been proven in terms of radical-scavenging capacity using the DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2-azinobis-(3-ethyl-benzothiazoline-6-sulphonic acid)), hydroxyl and superoxide radical methods. Additionally, the reducing power, ferrous ion-chelating (FIC), ferric reducing antioxidant power (FRAP), and the ability of the protein hydrolysates to inhibit lipid peroxidation have also been explored. The results collected in this review clearly indicate that the substrate properties, as well as the conditions under which the hydrolysis reaction is carried out, affect the final antioxidant potential of the obtained peptides. This is mainly due to the structural properties of the obtained compounds such as size or amino acid sequences.
Collapse
Affiliation(s)
- Michał Czelej
- Biolive Innovation Sp. z o. o., 3 Dobrzańskiego Street, 20-262 Lublin, Poland;
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
- Correspondence:
| | - Katarzyna Garbacz
- Biolive Innovation Sp. z o. o., 3 Dobrzańskiego Street, 20-262 Lublin, Poland;
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
| | - Tomasz Czernecki
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
| | - Jacek Wawrzykowski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka Street, 20-400 Lublin, Poland;
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
| |
Collapse
|
19
|
Abd-Talib N, Yaji ELA, Wahab NSA, Razali N, Len KYT, Roslan J, Saari N, Pa’ee KF. Bioactive Peptides and Its Alternative Processes: A Review. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Microbial Peptidase in Food Processing: Current State of the Art and Future Trends. Catal Letters 2022. [DOI: 10.1007/s10562-022-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Noman A, Wang Y, Zhang C, Abed S. Antioxidant Activity of Hybrid Sturgeon (<i>Huso dauricus</i> × <i>Acipenser schrenckii</i>) Protein Hydrolysate Prepared Using Bromelain, Its Fractions and Purified Peptides. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/146317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Rashidian G, Abedian Kenari A, Nikkhah M. Dietary effects of a low-molecular weight fraction (<10 kDa) from shrimp waste hydrolysate on growth performance and immunity of rainbow trout (Oncorhynchus mykiss): Employing nanodelivery systems. FISH & SHELLFISH IMMUNOLOGY 2021; 118:294-302. [PMID: 34537336 DOI: 10.1016/j.fsi.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Aquaculture by-products have been of great interest for producing protein hydrolysates with multiple biological activities. The present experiment was carried out to evaluate dietary effects of a low-molecular fraction (<10 kDa) from shrimp waste hydrolysate in forms of unprotected and nanocapsulated on growth and immunity of rainbow trout. Therefore, six diets were designed including a control diet (no supplementation), D1 (1 g kg-1 of unprotected fraction), D2 (1 g kg-1 chitosan nanocapsules), D3 (1 g kg-1 liposome nanocapsules), D4 (1 g kg-1 of fraction-loaded chitosan nanocapsules), D5 (1 g kg-1 of fraction-loaded liposome nanocapsules). Fish (0.91 ± 0.15 g) were fed with experimental diets until apparent satiation for six weeks followed by a 5-day experimental challenge with Streptococcus iniae. Results revealed that growth is strongly affected in fish receiving the fraction with D4 treatment showing the highest weight gain, SGR, final weight and the lowest FCR (p < 0.05). Nanocapsules without fraction did not show remarkable effects when compared to control group. In terms of serum and mucus immune parameters of lysozyme, complement activity, myeloperoxidase activity, and total protease, fish from D4 group showed the highest measured values followed by D5 (p < 0.05). Key immune related genes of IL-6 and TNF-α were noticeably up-regulated in fish from D1, D4, and D5 groups, which were consistent with survival rate after 5 days challenge with Streptococcus iniae. All together, the present findings highlighted the application of chitosan and liposome nanocarriers in aquaculture and potential of low-molecular weight fraction (<10 kDa) from shrimp wastes hydrolysate to improve growth performance and immune status of rainbow trout.
Collapse
Affiliation(s)
- Ghasem Rashidian
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 64414-356, Noor, Iran
| | - Abdolmohammad Abedian Kenari
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 64414-356, Noor, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
23
|
Characterization, Bioactivity and Application of Chitosan-Based Nanoparticles in a Food Emulsion Model. Polymers (Basel) 2021; 13:polym13193331. [PMID: 34641147 PMCID: PMC8512445 DOI: 10.3390/polym13193331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, chitosan nanoparticles (CNPs) were prepared by the ionic gelation technique with tripolyphosphate (TPP), and the effect of CNP composition and physicochemical characteristics were evaluated. After the synthesis optimization, CNPs were used as carriers for a fish protein hydrolysate (FPH) with bioactive properties (CNPH). The physicochemical characteristics, antioxidant capacity and antimicrobial, antihypertensive and emulsifier properties of unloaded and loaded CNPs in a food system model were studied. CNPH showed a uniform particle distribution, size ~200 nm, high stability (zeta potential around 30 mV), radical scavenging activity and increased antimicrobial activity against Staphylococcus aureus, Shigella sonnei and Aeromonas hydrophila. Additionally, CNPH showed an angiotensin I-converting enzyme (ACE)-inhibitory activity of 63.6% and, when added to a food emulsion model, this system containing CNPs, with or without FHP, exhibited improved food emulsion stability. Thus, CNPs were able to carry the FPH while maintaining their bioactive properties and can be an alternative to the delivery of bioactive peptides with potential as an emulsion stabilizer for food applications.
Collapse
|
24
|
Latorres JM, Aquino S, Rocha M, Wasielesky W, Martins VG, Prentice C. Nanoencapsulation of white shrimp peptides in liposomes: Characterization, stability, and influence on bioactive properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Juliana Machado Latorres
- Laboratory of Food Technology School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Sabrine Aquino
- Laboratory of Food Technology School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Meritaine Rocha
- Laboratory of Microbiology School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Wilson Wasielesky
- Laboratory of Mariculture, Aquaculture Marine Station Institute of Oceanography Federal University of Rio Grande Rio Grande Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Carlos Prentice
- Laboratory of Food Technology School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| |
Collapse
|
25
|
|
26
|
Effects of Enzymatic Hydrolysis on the Functional Properties, Antioxidant Activity and Protein Structure of Black Soldier Fly ( Hermetia illucens) Protein. INSECTS 2020; 11:insects11120876. [PMID: 33316988 PMCID: PMC7763077 DOI: 10.3390/insects11120876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022]
Abstract
Simple Summary According to the FAO, the world’s population will reach 9 billion by 2050, and in order to provide enough food, meat production must increase by 100% and food production by 70%. Furthermore, more than 80% of fresh water resources are being used for agriculture, and 40% of the total food produced annually, is wasted. One sustainable agricultural practice involves converting by-products from the food and agriculture industry into valuable biomass, such as black soldier flies. Black soldier fly larvae can feed on by-products, and convert them to protein, carbohydrates, and oil. Black soldier flies could be used for feed and food development using different processing methods including enzymatic hydrolysis. Abstract The effects of chemical protein extraction, and enzymatic hydrolysis with Alcalase, papain and pepsin, on the functional properties, antioxidant activity, amino acid composition and protein structure of black soldier fly (H. illucens) larval protein were examined. Alcalase hydrolysates had the highest degree of hydrolysis (p < 0.05), with the highest hydrolysate and oil fraction yield (p < 0.05). Pepsin hydrolysates showed the lowest oil holding capacity (p < 0.05), whereas no significant differences were observed among other enzymes and protein concentrates (p > 0.05). The emulsifying stability and foam capacity were significantly lower in protein hydrolysates than protein concentrate (p < 0.05). The antioxidant activity of protein hydrolysates from protein concentrate and Alcalase was higher than that with papain and pepsin (p < 0.05), owing to the higher hydrophobic amino acid content. Raman spectroscopy indicated structural changes in protein α-helices and β-sheets after enzymatic hydrolysis.
Collapse
|
27
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
28
|
Rocha Camargo T, Ramos P, Monserrat JM, Prentice C, Fernandes CJC, Zambuzzi WF, Valenti WC. Biological activities of the protein hydrolysate obtained from two fishes common in the fisheries bycatch. Food Chem 2020; 342:128361. [PMID: 33077277 DOI: 10.1016/j.foodchem.2020.128361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 01/07/2023]
Abstract
Shrimp trawling is an important socio-economic activity; however, the bycatch can be problematic to the environment. Thus, the present study investigated potential uses of the bycatch to generate value-added products. The biological activity of the protein hydrolysates obtained from the two most abundant fish species (Micropogonias furnieri and Paralonchurus brasiliensis) was evaluated. Muscle and skin samples of both species were hydrolyzed using two enzymes, Alcalase 2.4 L® or Protamex®. The in vitro antioxidant capacity against peroxyl radicals, DPPH, and sulfhydryl groups were analyzed. Cell viability, Western Blotting, Zymogram, and Real-time PCR analyses were performed. The results showed that the hydrolysates have antioxidant activity and no effect on cell viability at doses lower than 16 mg/mL. In addition, they can modulate extracellular remodelling and intracellular pathways related to cell adhesion. Thus, the hydrolysis of the fish bycatch allows the release of bioactive peptides with potential use in the food industry.
Collapse
Affiliation(s)
- Tavani Rocha Camargo
- Aquaculture Center, São Paulo State University (UNESP), Campus Jaboticabal, Jaboticabal, SP, Brazil.
| | - Patrícia Ramos
- Marine Station of Aquaculture, Aquaculture postgraduate, Oceanography Institute, Federal University of Rio Grande (FURG) Rio Grande, RS, Brazil
| | - José M Monserrat
- Marine Station of Aquaculture, Aquaculture postgraduate, Oceanography Institute, Federal University of Rio Grande (FURG) Rio Grande, RS, Brazil; Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Carlos Prentice
- Marine Station of Aquaculture, Aquaculture postgraduate, Oceanography Institute, Federal University of Rio Grande (FURG) Rio Grande, RS, Brazil
| | - Célio J C Fernandes
- Department of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University (UNESP), Campus Botucatu, Botucatu, SP, Brazil
| | - Willian F Zambuzzi
- Department of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University (UNESP), Campus Botucatu, Botucatu, SP, Brazil
| | - Wagner C Valenti
- Aquaculture Center, São Paulo State University (UNESP), Campus Jaboticabal, Jaboticabal, SP, Brazil
| |
Collapse
|
29
|
|
30
|
da Costa de Quadros C, Lima KO, Bueno CHL, dos Santos Fogaça FH, Rocha M, Prentice C. Effect of the edible coating with protein hydrolysate on cherry tomatoes shelf life. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Vo TDL, Pham KT, Le VMV, Lam HH, Huynh ON, Vo BC. Evaluation of iron-binding capacity, amino acid composition, functional properties of Acetes japonicus proteolysate and identification of iron-binding peptides. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Synthesis, Radical-Scavenging Activities, and Protective Effects against AAPH-Induced Oxidative Damage in DNA and Erythrocytes of Piperine Derivatives. J CHEM-NY 2020. [DOI: 10.1155/2020/9026286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Piperine amino acid derivatives containing phenolic hydroxyl groups were synthesized using piperine as the raw material by amide hydrolysis, amidation, ester hydrolysis, and deacetalization. The obtained products were characterized by mass spectrometry and nuclear magnetic resonance. The antioxidant activity of the piperine derivatives was evaluated by the DPPH and ABTS scavenging rates and the total antioxidant capacity. The results showed that the piperine amino acid (4a–4d) had relatively weak radical-scavenging ability, while the piperine amino acid derivatives (5a–5d) containing phenolic hydroxyl groups had significant radical-scavenging effects. In addition, the total reducing ability of 5a–5d was better than that of piperine. The study also found that piperine derivatives containing phenolic hydroxyl groups played an important role in inhibiting oxidative damage in DNA and erythrocytes.
Collapse
|
33
|
García-Romo JS, Noguera-Artiaga L, Gálvez-Iriqui AC, Hernández-Zazueta MS, Valenzuela-Cota DF, González-Vega RI, Plascencia-Jatomea M, Burboa-Zazueta MG, Sandoval-Petris E, Robles-Sánchez RM, Juárez J, Hernández-Martínez J, Santacruz-Ortega HDC, Burgos-Hernández A. Antioxidant, antihemolysis, and retinoprotective potentials of bioactive lipidic compounds from wild shrimp (Litopenaeus stylirostris) muscle. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1719210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Joel Said García-Romo
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Mexico
| | - Luis Noguera-Artiaga
- Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández de Elche, Grupo Calidad y Seguridad Alimentaria, Alicante, Spain
| | | | | | | | | | | | | | - Edgar Sandoval-Petris
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo, Mexico
| | | | - Josué Juárez
- Departamento de Física, Universidad de Sonora, Hermosillo, Mexico
| | | | | | - Armando Burgos-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Mexico
| |
Collapse
|
34
|
Wang J, Lu S, Guo X, Li R, Huang L. Effect of crude peptide extract from mutton ham on antioxidant properties and quality of mutton patties. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Shiling Lu
- Food College Shihezi University Shihezi China
| | - Xin Guo
- Food College Shihezi University Shihezi China
| | - Ruiting Li
- Food College Shihezi University Shihezi China
| | | |
Collapse
|
35
|
Priya S. Therapeutic Perspectives of Food Bioactive Peptides: A Mini Review. Protein Pept Lett 2019; 26:664-675. [DOI: 10.2174/0929866526666190617092140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/17/2023]
Abstract
Bioactive peptides are short chain of amino acids (usually 2-20) that are linked by amide
bond in a specific sequence which have some biological effects in animals or humans. These can be
of diverse origin like plant, animal, fish, microbe, marine organism or even synthetic. They are
successfully used in the management of many diseases. In recent years increased attention has been
raised for its effects and mechanism of action in various disease conditions like cancer, immunity,
cardiovascular disease, hypertension, inflammation, diabetes, microbial infections etc. Bioactive
peptides are more bioavailable and less allergenic when compared to total proteins. Food derived
bioactive peptides have health benefits and its demand has increased tremendously over the past
decade. This review gives a view on last two years research on potential bioactive peptides derived
from food which have significant therapeutic effects.
Collapse
Affiliation(s)
- Sulochana Priya
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIRNIIST), Trivandrum, Kerala, 695 019, India
| |
Collapse
|
36
|
Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of Stripped weakfish (Cynoscion guatucupa). Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Abreu ADS, De Souza MM, Da Rocha M, Wasielesky WF, Prentice C. Functional Properties of White Shrimp ( Litopenaeus vannamei) By-Products Protein Recovered by Isoelectric Solubilization/Precipitation. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1628151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Adriana De Souza Abreu
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Michele Moraes De Souza
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Meritaine Da Rocha
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Wilson Francisco Wasielesky
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Carlos Prentice
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
38
|
De Quadros CDC, Lima KO, Bueno CHL, Fogaça FHDS, Da Rocha M, Prentice C. Evaluation of the Antioxidant and Antimicrobial Activity of Protein Hydrolysates and Peptide Fractions Derived from Colossoma macropomum and Their Effect on Ground Beef Lipid Oxidation. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1628152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Camila Da Costa De Quadros
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Karina Oliveira Lima
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Caio Hendrix Luz Bueno
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | | | - Meritaine Da Rocha
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Carlos Prentice
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
39
|
Odeleye T, White WL, Lu J. Extraction techniques and potential health benefits of bioactive compounds from marine molluscs: a review. Food Funct 2019; 10:2278-2289. [DOI: 10.1039/c9fo00172g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Marine molluscs and their bioactive compounds are of particular relevance to the growing pool of nutraceutical resources under global investigation.
Collapse
Affiliation(s)
- Tinu Odeleye
- School of Science
- Faculty of Health and Environmental Sciences
- Auckland University of Technology
- Auckland 1010
- New Zealand
| | - William Lindsey White
- School of Science
- Faculty of Health and Environmental Sciences
- Auckland University of Technology
- Auckland 1010
- New Zealand
| | - Jun Lu
- School of Science
- Faculty of Health and Environmental Sciences
- Auckland University of Technology
- Auckland 1010
- New Zealand
| |
Collapse
|