1
|
Huang C, Qian C, Li Z, Qin Y, Mo W, Lin F. Rosa roxburghii juice alleviates DEHP-induced reproductive system damage in male mice via the PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119742. [PMID: 40185256 DOI: 10.1016/j.jep.2025.119742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosa roxburghii is an ethnic medicinal herb. Folk medicine collections have documented its nourishing and strengthen effects. It has been used to improve reproductive health, but scientific evidence supporting its efficacy and mechanisms remains limited. AIM OF THIS STUDY Endocrine-disrupting chemicals, such as di-(2-ethylhexyl) phthalate (DEHP), are known to impair male reproductive health. This study aims to investigate the protective effects of raw Rosa roxburghii juice (RRJ) on DEHP-induced reproductive toxicity in mice and elucidates its underlying mechanisms. MATERIALS AND METHODS Using a DEHP-induced murine model of reproductive damage, we evaluated the effects of RRJ on sperm quality, testicular histopathology, reproductive endocrine function, oxidative stress, inflammation, apoptosis, and DNA damage. Network pharmacology analysis was performed to identify the active components, targets, and mechanisms underlying the therapeutic effects of Rosaroxburghii. RESULTS Our data demonstrated that RRJ significantly improved sperm quality, alleviated testicular atrophy, restored endocrine disorders, and mitigated oxidative stress, inflammation, and apoptosis in testicular tissues. Additionally, RRJ reduced testicular and sperm DNA damage, as evidenced by decreased γ-H2AX expression and DNA fragmentation index. Network pharmacology analysis identified quercetin, apigenin, luteolin, kaempferol, eriodictyol, and ellagic acid as the key bioactive compounds in RRJ, with the PI3K/AKT signaling pathway playing a crucial role in its therapeutic effects. Western blotting confirmed that RRJ reversed DEHP-induced suppression of the PI3K/AKT pathway. CONCLUSIONS This study demonstrates that RRJ protects against DEHP-induced reproductive toxicity through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms, mediated in part by the PI3K/AKT signaling pathway. This work provides the first comprehensive evidence of the protective effects of Rosa roxburghii against male reproductive system damage and its underlying mechanisms.
Collapse
Affiliation(s)
- Chaoyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, 530021, Guangxi, China
| | - Chen Qian
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, 530021, Guangxi, China
| | - Zongxian Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, 530021, Guangxi, China
| | - Yuanyuan Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, 530021, Guangxi, China
| | - Wuning Mo
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, 530021, Guangxi, China.
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Yin C, Zhang Y, Zhang L, Tian Y, Zhong X, Fang X, Yang Y, Tao A. Exploring Rosa roxburghii Tratt polysaccharides: From extraction to application potential in functional products - An in-depth review. Int J Biol Macromol 2024; 280:135543. [PMID: 39278439 DOI: 10.1016/j.ijbiomac.2024.135543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Rosa roxburghii Tratt (R. roxburghii), a unique ethnic medicine native to southwest China, is classified as both medicinal and culinary, offering a multitude of health benefits. Traditionally, it is used to eliminate diet and relieve diarrhea, nourish Yin and invigorate the spleen, dispel wind and dampness, enhance immunity, and promote the healthy development of the body. Furthermore, it serves as a remedy for ailments such as scurvy, night blindness, cancer, hyperlipidemia, hyperglycemia, and hypertension. R. roxburghii contains many nutritious and active ingredients, including proteins, vitamin C, inorganic salts, essential amino acids, polysaccharides, phenols, triterpenes, organic acids, and superoxide dismutase (SOD). Among them, polysaccharides stand out as pivotal bioactive components, comprising mannose, ribose, rhamnose, glucosamine hydrochloride, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose, among others. R. roxburghii polysaccharides (RTFPs) present diverse biological activities, including antioxidant, anti-fatigue, hypoglycemic, anti-tumor, immune modulation, relief from ulcerative colitis, protection of neural stem cells from glutamate damage, and improvement of intestinal micro-ecology. Due to its distinctive bioactivity, the research on RTFPs is booming. While numerous extraction and purification techniques have successfully isolated and characterized RTFPs, comprehensive understanding of their chemical structure, mechanisms, structure-activity relationships, safety profiles, and practical applications remains limited. This knowledge gap hampers their optimal utilization and development. In response, this research offers an overview of extraction, purification, structure characteristics, biological activities, structure-activity relationships, and pharmaceutical application of RTFPs. Additionally, this research not only lays a theoretical basis for the comprehensive exploration and exploitation of R. roxburghii and its polysaccharide resources but also offers extensive knowledge and insights into the development and application of RTFPs as a novel functional foods and drugs.
Collapse
Affiliation(s)
- Chenglong Yin
- College of Pharmacy, Dali University, Dali 671003, China
| | - Yue Zhang
- College of Pharmacy, Dali University, Dali 671003, China
| | - Lingsheng Zhang
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Yongjie Tian
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Xuehua Zhong
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Xiao Fang
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Yongcheng Yang
- College of Pharmacy, Dali University, Dali 671003, China.
| | - Aien Tao
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China.
| |
Collapse
|
3
|
Shi L, He Q, Li J, Liu Y, Cao Y, Liu Y, Sun C, Pan Y, Li X, Zhao X. Polysaccharides in fruits: Biological activities, structures, and structure-activity relationships and influencing factors-A review. Food Chem 2024; 451:139408. [PMID: 38735097 DOI: 10.1016/j.foodchem.2024.139408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Fruits are a rich source of polysaccharides, and an increasing number of studies have shown that polysaccharides from fruits have a wide range of biological functions. Here, we thoroughly review recent advances in the study of the bioactivities, structures, and structure-activity relationships of fruit polysaccharides, especially highlighting the structure-activity influencing factors such as extraction methods and chemical modifications. Different extraction methods cause differences in the primary structures of polysaccharides, which in turn lead to different polysaccharide biological activities. Differences in the degree of modification, molecular weight, substitution position, and chain conformation caused by chemical modification can all affect the biological activities of fruit polysaccharides. Furthermore, we summarize the applications of fruit polysaccharides in the fields of pharmacy and medicine, foods, cosmetics, and materials. The challenges and perspectives for fruit polysaccharide research are also discussed.
Collapse
Affiliation(s)
- Liting Shi
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| | - Yilong Liu
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yunlin Cao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Chongde Sun
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoyong Zhao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Zhang Q, Wu S, Dai Q, Hu P, Chen G. Effects of Different Drying Methods on the Structural Characteristics and Multiple Bioactivities of Rosa roxburghii Tratt Fruit Polysaccharides. Foods 2024; 13:2417. [PMID: 39123608 PMCID: PMC11312052 DOI: 10.3390/foods13152417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Drying conditions significantly impact the compositions and microstructures of polysaccharides, leading to various effects on their chemical characteristics and bioactivities. The objective of this study was to investigate how different industrial drying techniques, i.e., hot air drying, infrared drying, microwave vacuum drying, and freeze drying, affect the structural properties and biological activities of polysaccharides extracted from Rosa roxburghii Tratt fruit (RRTP). Results revealed that these drying methods significantly altered the extraction yield, molecular weights, monosaccharide ratios, contents of uronic acid and total sugars, gelling properties, particle sizes, thermal stability, and microstructures of RRTPs. However, the monosaccharide composition and functional groups of polysaccharides remained consistent across the different drying techniques. Biological activity assays demonstrated that RRTPs, particularly those processed through microwave vacuum drying (MVD-RRTP), exhibited excellent anti-linoleic acid oxidation, robust anti-glycosylation effects, and significant α-glucosidase inhibition in vitro. The outcomes of this research demonstrate that microwave vacuum drying serves as an effective pre-extraction drying method for RRTPs, enhancing their biological activities. This technique is particularly advantageous for preparing RRTPs intended for use in functional foods and pharmaceuticals, optimizing their health-promoting properties for industrial applications.
Collapse
Affiliation(s)
- Qiuqiu Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (S.W.); (Q.D.)
| | - Sha Wu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (S.W.); (Q.D.)
| | - Qinghua Dai
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (S.W.); (Q.D.)
| | - Peng Hu
- School of Pharmacy, Hunan Traditional Chinese Medical College, Zhuzhou 412012, China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (S.W.); (Q.D.)
| |
Collapse
|
5
|
Jain A, Sarsaiya S, Gong Q, Wu Q, Shi J. Chemical diversity, traditional uses, and bioactivities of Rosa roxburghii Tratt: A comprehensive review. Pharmacol Ther 2024; 259:108657. [PMID: 38735487 DOI: 10.1016/j.pharmthera.2024.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Rosa roxburghii Tratt (RRT), known as chestnut rose, has been a subject of growing interest because of its diverse chemical composition and wide range of traditional uses. This comprehensive review aimed to thoroughly examine RRT, including its traditional applications, chemical diversity, and various bioactivities. The chemical profile of this plant is characterized by the presence of essential nutrients such as vitamin C (ascorbic acid), flavonoids, triterpenes, organic acids, tannins, phenolic compounds, polysaccharides, carotenoids, triterpenoids, volatile compounds, amino acids, and essential oils. These constituents contribute to the medicinal and nutritional value. Additionally, we explore the multifaceted bioactivities of RRT, including its potential as an anticancer agent, antioxidant, antiaging agent, antiatherogenic agent, hypoglycemic agent, immunoregulatory modulator, radioprotective agent, antimutagenic agent, digestive system regulator, anti-inflammatory agent, cardioprotective agent, and antibacterial agent, and its intriguing role in modulating the gut microbiota. Furthermore, we discuss the geographical distribution and genetic diversity of this plant species and shed light on its ecological significance. This comprehensive review provides a holistic understanding of RRT, bridges traditional knowledge with contemporary scientific research, and highlights its potential applications in medicine, nutrition, and pharmacology.
Collapse
Affiliation(s)
- Archana Jain
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China; Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi 563003, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China; Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
6
|
Ni M, Chen J, Fu M, Li H, Bu S, Hao X, Gu W. UPLC-ESI-MS/MS-Based Analysis of Various Edible Rosa Fruits Concerning Secondary Metabolites and Evaluation of Their Antioxidant Activities. Foods 2024; 13:796. [PMID: 38472910 DOI: 10.3390/foods13050796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The genus Rosa is globally popular with well-established applications since it has a high edible and medicinal value. However, relatively limited research has been conducted on the composition and quality of wild Rosa fruits. The present study aimed to compare the properties and chemical components of five wild edible Rosa fruits, Rosa roxburghii, Rosa sterilis, Rosa laevigata, Rosa davurica, and Rosa sericea. The UPLC-ESI-MS/MS approach identified the key metabolites among the five Rosa fruits as flavonoids, phenolic acids, and organic acids. The main differential metabolites among the five fruits are flavonoids (22.29-45.13%), phenolic acids (17-22.27%), and terpenoids (7.7-24%), respectively. In total, 125 compounds served as potential markers for the five Rosa species. Differential metabolic pathways of five Rosa fruits were analyzed using the KEGG approach. Rosa laevigata fruits showed the highest total polysaccharide (TPS) content of 64.48 g/100 g. All the five Rosa extracts effectively decreased the levels of malondialdehyde while increasing the activities of superoxide dismutase and glutathione peroxidase in the H2O2-induced HaCaT cell model, demonstrating high potential for antioxidant development. Our findings suggest that the five studied Rosa fruits exhibit biological activity and edible value worth further exploration.
Collapse
Affiliation(s)
- Ming Ni
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550014, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Junlei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Mao Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Huanyang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Shengqian Bu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
7
|
Nuerxiati R, Wei L, Mutailifu P, Abuduwaili A, Paierhati P, Lei C, Zhiyan Y, Yufan W, Yili A. The structural characteristic of acidic-degraded polysaccharides from seeds of Plantago ovata Forssk and its biological activity. Int J Biol Macromol 2024; 262:129494. [PMID: 38242396 DOI: 10.1016/j.ijbiomac.2024.129494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
In this study, a response surface methodology (RSM) was used to determine the best combination for acid degradation parameters to reduce the viscosity of Plantago ovata Forssk seed polysaccharide (POFP). Then, the two major homogeneous polysaccharides (AH-POFP1 and AH-POFP3) were obtained by DEAE-650 M and Sephadex G-100 column chromatography. The apparent structure of the main fraction AH-POFP1 was characterized by SEM, TG and XRD, and the linkage of AH-POFP1 was determined by a combination of partial acidolysis, Smith's degradation, methylation analysis and 2D NMR analysis. Structural analysis showed that AH-POFP1 was mainly composed of xylose, with a molecular weight of 618.1 kDa, and had a backbone of 1 → 4-linked Xylp, as well as branches of T-linked Xylp, 1 → 4-linked Xylp attached to the O-2 position. The antioxidant activity assays showed that the both AH-POFP1 and AH-POFP3 possess strong scavenging radical ability. Moreover, AH-POFP1 inhibits the secretion of pro-inflammatory factors, and promotes the secretion of anti-inflammatory factors, thereby exerting anti-inflammatory effects. These findings may help to guide future applications of Plantago ovata Forssk in the fields of food, health care, and pharmacy.
Collapse
Affiliation(s)
- Rehebati Nuerxiati
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Liu Wei
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Paiheerding Mutailifu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; Xinjiang Key Laboratory of Hotan Characteristic Traditional Chinese Medicine Research, College of Xinjiang Uyghur Medicine
| | - Aytursun Abuduwaili
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Paiziliya Paierhati
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Cao Lei
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Yang Zhiyan
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Wang Yufan
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; Key Lab of Natural Product Chemistry and Application, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Abulimiti Yili
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
8
|
Jiao X, Zhang M, Zhang M, Hao L, Wu C. Ultrasound-assisted enzymatic extraction, structural characterization, and anticancer activity of polysaccharides from Rosa roxburghii Tratt fruit. Int J Biol Macromol 2024; 259:127926. [PMID: 37956813 DOI: 10.1016/j.ijbiomac.2023.127926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
In this work, Rosa roxburghii Tratt fruit polysaccharides (RPs) were extracted by ultrasound-assisted enzymatic method. The highest extraction yield of RPs was 4.78 ± 0.10 % under the optimal extraction conditions. Two purified fractions named RP1 and RP3 were obtained and systematically characterized by a combination strategy of FT-IR, monosaccharide composition, molecular weight distribution, methylation and 2D NMR spectroscopy analyses. Structural analysis showed that the main chain of RP1 was composed of rhamnogalacturonan type I (RG-I), while the side chains were rich in arabinogalactan and galactose. RP3 was composed of long homogalacturonan (HG) backbone interspersed with alternating sequences of RG-I domains, with galactose and arabinose side chains. RP1 and RP3 induced apoptosis of MCF-7 cells in a dose dependent manner in vitro especially for RP1, and had no effect on L929 cells. Furthermore, the possible anticancer mechanisms were revealed, and results suggested that RP1 induced apoptosis through ROS-dependent pathway and mitochondrial pathway. The results of this work not only provided an efficient extraction method and theoretical basis for the application of RPs, but also may contribute to develop novel functional foods or pharmaceutical products for the prevention and treatment of human breast cancer disease.
Collapse
Affiliation(s)
- Xue Jiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Mengye Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Zong D, Liu H, Gan P, Ma S, Liang H, Yu J, Li P, Jiang T, Sahu SK, Yang Q, Zhang D, Li L, Qiu X, Shao W, Yang J, Li Y, Guang X, He C. Chromosomal-scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1264-1280. [PMID: 37964640 DOI: 10.1111/tpj.16543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Rosa roxburghii and Rosa sterilis, two species belonging to the Rosaceae family, are widespread in the southwest of China. These species have gained recognition for their remarkable abundance of ascorbate in their fresh fruits, making them an ideal vitamin C resource. In this study, we generated two high-quality chromosome-scale genome assemblies for R. roxburghii and R. sterilis, with genome sizes of 504 and 981.2 Mb, respectively. Notably, we present a haplotype-resolved, chromosome-scale assembly for diploid R. sterilis. Our results indicated that R. sterilis originated from the hybridization of R. roxburghii and R. longicuspis. Genome analysis revealed the absence of recent whole-genome duplications in both species and identified a series of duplicated genes that possibly contributing to the accumulation of flavonoids. We identified two genes in the ascorbate synthesis pathway, GGP and GalLDH, that show signs of positive selection, along with high expression levels of GDP-d-mannose 3', 5'-epimerase (GME) and GDP-l-galactose phosphorylase (GGP) during fruit development. Furthermore, through co-expression network analysis, we identified key hub genes (MYB5 and bZIP) that likely regulate genes in the ascorbate synthesis pathway, promoting ascorbate biosynthesis. Additionally, we observed the expansion of terpene synthase genes in these two species and tissue expression patterns, suggesting their involvement in terpenoid biosynthesis. Our research provides valuable insights into genome evolution and the molecular basis of the high concentration of ascorbate in these two Rosa species.
Collapse
Affiliation(s)
- Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Peihua Gan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Shaojie Ma
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jinde Yu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Peilin Li
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Tao Jiang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Qingqing Yang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Deguo Zhang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Xu Qiu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Wenwen Shao
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | | | - Yonghe Li
- Yunnan Agricultural University, Kunming, 650201, China
| | - Xuanmin Guang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
10
|
Lu X, Guo C, Zhu Y. Selenium-enriched crude polysaccharide from Rosa roxburghii Tratt ameliorates cadmium-induced acute kidney injury in mice by modulating intestinal microorganisms. Heliyon 2023; 9:e19678. [PMID: 37809572 PMCID: PMC10558930 DOI: 10.1016/j.heliyon.2023.e19678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Cadmium is a toxic heavy metal that can cause serious damage to the body. It can trigger the oxidative stress response and damage various organs of the body (kidney, liver, brain, lung, testis, etc.). Selenium polysaccharides are considered to possess better antioxidant, immune regulation, and heavy metal removal activities than other polysaccharides, But few reports focused on Selenium Polysaccharides in Rosa roxburghii Tratt. The purpose of this study was to isolate crude polysaccharides (RRP), and crude Selenium polysaccharides (SeRRP) from Rosa roxburghii Tratt fruit and determine their structure, antioxidant activity, and protective effects on cadmium-exposed mice (PONY-2020-FL-62). Results showed that SeRRP had lower half-maximal inhibitory concentration (IC50) and higher superoxide dismutase (SOD) activity. The intake of food and body weight decreased, while the kidney index and liver index increased significantly after acute cadmium exposure. Most significantly, SeRRP ameliorates kidney injury by improving the kidney index. Furthermore, changes in the gut microbiota may be related to SeRRP or RRP. SeRRP and RRP decreased the Firmicutes/Bacteroidetes ratio, and increased the abundance of beneficial bacteria (Lachnospiraceae, Muribaculaceae, and Ruminococcaceae, etc.). These findings indicate that SeRRP and RRP have the potential to be functional food against oxidant and heavy metal exposure.
Collapse
Affiliation(s)
| | | | - Yi Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
11
|
Olech M, Cybulska J, Nowacka-Jechalke N, Szpakowska N, Masłyk M, Kubiński K, Martyna A, Zdunek A, Kaczyński Z. Novel polysaccharide and polysaccharide-peptide conjugate from Rosa rugosa Thunb. pseudofruit - Structural characterisation and nutraceutical potential. Food Chem 2023; 409:135264. [PMID: 36571899 DOI: 10.1016/j.foodchem.2022.135264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/27/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
A novel bioactive polysaccharopeptide (C1) and polysaccharide (C2) with an average molecular weight of 180 kDa and 70 kDa were isolated from R. rugosa pseudofruit. The composition of the macromolecules was established using 1H NMR, FT-IR, GC-MS, SDS-PAGE coupled with enzymatic cleavage, and proteomic analyses (LC-MS). C1 was found to contain 60.56 ± 1.82 % of sugars and 21.17 ± 0.47 % of uronic acids. Its main neutral monosaccharides were arabinose, rhamnose, galactose, glucose, fucose, and mannose. C1 was found to be a polysaccharopeptide containing pectinesterase-like protein. C2 was composed of 32.85 ± 0.97 % of sugars and 48.77 ± 1.15 % of uronic acids. Its main neutral monosaccharides were galactose, glucose, rhamnose, arabinose, and mannose. A promising nutraceutical value of the polysaccharides was revealed. Assays showed strong α-glucosidase inhibitory activity of both macromolecules and considerable antiradical potential and moderate lipoxygenase inhibitory activity of the crude polysaccharide. Moreover, antiproliferative activity of C2 was observed.
Collapse
Affiliation(s)
- Marta Olech
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland.
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin 20-290, Poland
| | - Natalia Nowacka-Jechalke
- Department of Pharmaceutical Botany, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland
| | - Nikola Szpakowska
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, Lublin 20-708, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, Lublin 20-708, Poland
| | - Aleksandra Martyna
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, Lublin 20-708, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin 20-290, Poland
| | - Zbigniew Kaczyński
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
12
|
Yang X, Yang J, Liu H, Ma Z, Guo P, Chen H, Gao D. Extraction, structure analysis and antioxidant activity of Sibiraea laevigata (L.) Maxim polysaccharide. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2125013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xuhua Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jutian Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Honghai Liu
- Technology Research and Development Center, Gansu Tobacco Industry Co.Ltd, Lanzhou, China
| | - Zhongren Ma
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Penghui Guo
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Dandan Gao
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
13
|
Su J, Zhang B, Fu X, Huang Q, Li C, Liu G, Hai Liu R. Recent advances in polysaccharides from Rose roxburghii Tratt fruits: isolation, structural characterization, and bioactivities. Food Funct 2022; 13:12561-12571. [PMID: 36453451 DOI: 10.1039/d2fo02192g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rosa roxburghii Tratt fruit (RRF), known commonly as Cili in China, is a highly valued fruit that contains abundant functional and nutritional constituents with a variety of health-promoting benefits. Polysaccharides (RRFPs) are regarded as one of the crucial biological compounds in RRF. Existing literature has shown that RRFPs possess various remarkable biological activities, such as antioxidant, hypoglycemic, antitumor, anti-inflammatory, and gut microbiota modulation capabilities. In recent years, isolation and purification methods, structural characteristics, and biological activities of RRFPs have been drawing increasing attention. However, there is no up-to-date review of research progress on this front. In this review, recent advances in RRFPs, including their isolation, purification, structural characterization, biological activity, and the structure-activity relationship are summarized and discussed. In addition, this review highlights the challenges and prospects of RRFPs. Overall, this review provides useful research underpinnings and updated information for the further development and utilization of RRFPs in the fields of health, food, and medicine.
Collapse
Affiliation(s)
- Juan Su
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China. .,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Guangzhou, 510610, China
| | - Rui Hai Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China. .,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.,Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
14
|
Yang X, Liu H, Yang J, Ma Z, Guo P, Chen H, Gao D. Purification, structural characterization and immunological activity of Sibiraea laexigata (L.) Maxim polysaccharide. Front Nutr 2022; 9:1013020. [PMID: 36185700 PMCID: PMC9521201 DOI: 10.3389/fnut.2022.1013020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sibiraea laexigata (L.) Maxim (SLM) has been used as an herbal tea for treating stomach discomfort and indigestion for a long time in china. Polysaccharides have been identified as one of the major bioactive compounds in the SLM. In the present paper, ultrasonic-assisted enzymatic extraction (UAEE) method was employed in polysaccharides extraction derived from SLM using polyethylene glycol (PEG) as extraction solvent, two SLM polysaccharides (SLMPs) fractions (SLMPs-1-1 and SLMPs-2-1) were purified by DEAE Cellulose-52 and Sephadex G-100 chromatography in sequence. Then, the preliminarily structure of the two factions were characterized by chemical composition analysis, molecular weight measurement, UVS, HPLC-PMP, FT-IR, nuclear magnetic resonance (NMR) spectra analysis and SEM. The results showed that SLMPs-1-1 and SLMPs-2-1 with different molecular weights of 1.03 and 1.02 kDa, mainly composed of glucose (46.76 and 46.79%), respectively. The results of structural characterization from FT-IR, 1H NMR, and SEM revealed that SLMPs-1-1 and SLMPs-2-1 contained the typical pyranoid polysaccharide with α-glycosidic bond and β-glycosidic bond. Furthermore, it was found that SLMPs-1-1 could increase the levels of tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2), and alleviated the immune organs tissue damage of cyclophosphamide (Cy)-treated mice. RT-qPCR and Western-Blot analysis showed that SLMPs-1-1 could significantly up-regulated the levels of NF-κB, TLR4, which revealed that SLMPs-1-1 could participate in immunosuppressive protection of Cy-treated mice. These findings suggested that the potential of SLMPs-1-1 as an alternative immunostimulator could be used in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xuhua Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Honghai Liu
- Technology Research and Development Center, Gansu Tobacco Industry Co., Ltd., Lanzhou, China
| | - Jutian Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Penghui Guo
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Dandan Gao
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
- *Correspondence: Dandan Gao,
| |
Collapse
|
15
|
RNA-Seq Analysis of Protection against Chronic Alcohol Liver Injury by Rosa roxburghii Fruit Juice (Cili) in Mice. Nutrients 2022; 14:nu14091974. [PMID: 35565941 PMCID: PMC9104053 DOI: 10.3390/nu14091974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Rosa roxburghii Tratt. fruit juice (Cili) is used as a medicinal and edible resource in China due to its antioxidant and hypolipidemic potentials. The efficacy of Cili in protecting alcohol-induced liver injury and its underlying mechanism was investigated. C57BL/6J mice received a Lieber-DeCarli liquid diet containing alcohol to produce liver injury. After the mice were adapted gradually to 5% alcohol, Cili (4 mL and 8 mL/kg/day for 4 weeks) were gavaged for treatment. The serum enzyme activities, triglyceride levels, histopathology and Oil-red O staining were examined. The RNA-Seq and qPCR analyses were performed to determine the protection mechanisms. Cili decreased serum and liver triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis were improved by Cili. The RNA-Seq analyses showed Cili brought the alcohol-induced aberrant gene pattern towards normal. The qPCR analysis verified that over-activation of CAR and PXR (Cyp2a4, Cyp2b10 and Abcc4) was attenuated by Cili. Cili alleviated overexpression of oxidative stress responsive genes (Hmox1, Gsta1, Gstm3, Nqo1, Gclc, Vldlr, and Cdkn1a), and rescued alcohol-downregulated metabolism genes (Angptl8, Slc10a2, Ces3b, Serpina12, C6, and Selenbp2). Overall, Cili was effective against chronic alcohol liver injury, and the mechanisms were associated with decreased oxidative stress, improved lipid metabolism through modulating nuclear receptor CAR-, PXR-and Nrf2-mediated pathways.
Collapse
|
16
|
Physicochemical characterization and in vitro biological activities of water-extracted polysaccharides fractionated by stepwise ethanol precipitation from Rosa roxburghii Tratt fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Sun ZY, Yu S, Tian Y, Han BQ, Zhao Y, Li YQ, Wang Y, Sun YJ, Shen W. Chestnut polysaccharides restore impaired spermatogenesis by adjusting gut microbiota and the intestinal structure. Food Funct 2022; 13:425-436. [PMID: 34913451 DOI: 10.1039/d1fo03145g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our previous study confirmed the beneficial effects of chestnut polysaccharides (CPs) on the spermatogenesis process, but the exact mechanism is not clear. Several studies have demonstrated the importance of balanced gut microbiota in maintaining normal reproductive function. In this study, we investigated the biological functions of CPs from the perspective of gut microbiota function, expecting to find out the specific mechanism of CPs in restoring impaired spermatogenesis. Compared with the control group, the mice treated with busulfan showed a reduced number of germ cells, structural changes in the small intestine and composition alteration in the gut microbiota at several levels, including the phylum and genus. In contrast, the number of germ cells in seminiferous tubules was significantly increased, and the structure of the small intestine and the composition of the gut microbiota were altered in the busulfan-treated mice after the CPs treatment. The 16s rRNA analysis results showed that the Firmicutes was the predominant phylum in all groups followed by Proteobacteria, Bacteroidetes, Actinobacteria, Tenericutes, Cyanobacteria and unidentified bacteria. Interestingly, the subsequent functional analysis implied that the steroid hormone biosynthesis process is the major metabolic pathway in the CPs-mediated restoration process and the experimental results confirmed this speculation. In conclusion, this study confirmed that CPs can restore the impaired spermatogenesis process by adjusting the gut microbiota and intestinal structure, which will also provide technical support and a theoretical basis for the subsequent treatment of male infertility.
Collapse
Affiliation(s)
- Zhong-Yi Sun
- Urology Department, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Shuai Yu
- Urology Department, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yu Tian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| | - Bao-Quan Han
- Urology Department, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000 China
| | - Ya-Qi Li
- Urology Department, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang 277100, China
| | - Yan Wang
- Urology Department, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yu-Jiang Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China. .,Dongying Vocational Institute, Dongying 257091, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
18
|
YAN Y, LUO Z, DENG T, CUI X, YANG J, PAN X, YANG L, WANG Y, LI L, LI L, GAO M, YANG X. Effect on hypoglycemic activity and UPLC–MS/MS profiling of Rosa roxburghii fruit fermented with Chinese traditional distiller's yeast. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.41822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yanfang YAN
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Zhongsheng LUO
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Tingfei DENG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | | | - Juan YANG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Xiong PAN
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Lishou YANG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Yu WANG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Liangqun LI
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Lilang LI
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Ming GAO
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Xiaosheng YANG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| |
Collapse
|
19
|
WANG J, WANG G, WANG X, QIN L, XU C, SHE X, HE Y, TAN D. Chemical constituents and bioactivities of Rosa roxburghii: a systematic review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.72722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | - Lin QIN
- Zunyi Medical University, China
| | - Chong XU
- Chongqing Academy of Traditional Chinese Medicine, China
| | | | - Yuqi HE
- Zunyi Medical University, China
| | | |
Collapse
|
20
|
Liu M, Liu W, Zhang W, Yao J, Mo X. Ultrasound-assisted extraction of boulardii yeast cell wall polysaccharides: Characterization and its biological functions on early-weaned lambs. Food Sci Nutr 2021; 9:3617-3630. [PMID: 34262722 PMCID: PMC8269659 DOI: 10.1002/fsn3.2318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 01/21/2023] Open
Abstract
Firstly, this study was designed to determine the optimal ultrasound-assisted extraction parameters of Saccharomyces boulardii yeast wall polysaccharides (BYWP). Besides, the molecular weight and the ratio of mannose to glucose in compositions of BYWP were determined. Also, the effects of BYWP on the gain feed ratio, diarrhea frequency, intestinal morphology, intestinal immunity, and intestinal microbial flora of early-weaned lambs were investigated. Single-factor tests and Response surface optimization analysis (RSA) were used to obtain the optimal ultrasound-assisted extraction conditions. Sephadex G-100 column chromatography and liquid chromatography were used to analyze the molecular weight and ratio of mannose to glucose. The feeding trial was used to observe the biological functions of BYWP on early-weaned lambs. A total of 72 36-day-old crossbred early-weaned lambs were randomly divided into 4 groups with 3 replicates per group and 6 lambs per replicate. Lambs in the four treatments were fed basal milk replacer without supplement (Group I), basal milk replacer+0.1% BYWP (Group II), basal milk replacer+0.3% BYWP (Group III), and basal milk replacer+0.5% BYWP (Group IV), respectively. The optimal ultrasound-assisted extraction parameters were as follows: NaOH addition: 52.63%, ultrasonic power: 143.15 W, ultrasonic time: 86.20 min, and the optimized extraction yield reached 37.54%. The molecular weights of main components BLC-1 and BLC-2 were 164.68 KDa and 13.21 KDa, and their proportions in BYWP were 24.57% and 66.08%, respectively. The proportions of glucose, mannose in BLC-1 and BLC-2 were 47.68%, 39.18%, and 76.59%, 6.86%, respectively. The addition of 0.3% and 0.5% BYWP in basal milk replacer significantly increased the average daily gain and feed conversion rate, and decreased the average fecal index and diarrhea rate of early-weaned lambs. The addition of 0.3% and 0.5% BYWP significantly enhanced the intestinal morphology (villus height, crypt depth, and V/C value) of jejunum, ileum (p < .05). The addition of 0.3% and 0.5% BYWP significantly improved the levels of SIgA and IL-10, but significantly decreased the level of IL-1 in the ileum (p < .05). The addition of 0.3% and 0.5% BYWP significantly increased the number of Lactobacillus, but significantly suppressed the growth of Salmonella and Clostridium perfringens (p < .05). The results of the present study suggest that the supplementation of BYWP in the diet of early-weaned lambs could increase feed utilization rate, and enhance intestinal morphology, immunological competence, microbial flora balance, and decrease the rate of diarrhea occurrence.
Collapse
Affiliation(s)
- Mengjian Liu
- College of Animal Science and TechnologyShihezi Universitythe North 4 RoadShiheziXinjiang832003China
| | - WuJun Liu
- College of Animal ScienceXinjiang Agriculture UniversityUrumuqiXinjiang830000China
| | - WenJu Zhang
- College of Animal Science and TechnologyShihezi Universitythe North 4 RoadShiheziXinjiang832003China
| | - Jun Yao
- College of Animal Science and TechnologyShihezi Universitythe North 4 RoadShiheziXinjiang832003China
| | - Xucheng Mo
- College of Animal ScienceXinjiang Agriculture UniversityUrumuqiXinjiang830000China
| |
Collapse
|
21
|
Li H, Fang W, Wang Z, Chen Y. Physicochemical, biological properties, and flavour profile of Rosa roxburghii Tratt, Pyracantha fortuneana, and Rosa laevigata Michx fruits: A comprehensive review. Food Chem 2021; 366:130509. [PMID: 34339923 DOI: 10.1016/j.foodchem.2021.130509] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/11/2021] [Accepted: 06/27/2021] [Indexed: 01/24/2023]
Abstract
In China, three Rosaceae fruits with distinctive flavours and functions have recently been transformed from edible plants into standardised juice or beverage products. To enhance the development of these fruit products, the results and conclusions from various investigations of the chemical and biological properties of fruits should be summarised. Based on industrial advances, there are still some limitation in the research and development of these fruit products that need to be addressed. Therefore, in this report, we provided a comprehensive and rigorous review to summarise critical data from phytochemical and biological investigations and from flavour profiles and industrial development of these fruit products. Our goal is to provide insights into recent research findings in order to advance studies and developments of products of these flavourful fruits from a reasonable perspective.
Collapse
Affiliation(s)
- Huan Li
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Campus Zunyi Medical University, Zhuhai, Guangdong, China
| | - Wangyang Fang
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Campus Zunyi Medical University, Zhuhai, Guangdong, China
| | - Ze Wang
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Campus Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Yang Chen
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Campus Zunyi Medical University, Zhuhai, Guangdong, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
22
|
Wang LT, Lv MJ, An JY, Fan XH, Dong MZ, Zhang SD, Wang JD, Wang YQ, Cai ZH, Fu YJ. Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: a review. Food Funct 2021; 12:1432-1451. [PMID: 33533385 DOI: 10.1039/d0fo02603d] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to the growing global population, reduction in arable land and effects of climate change, incongruity between food supply and demand has become increasingly severe. Nowadays, with awareness of the elementary nutrients required for human growth, increasing attention is being paid to the health and medical functions of food. Along with increased food production achieved by modern agricultural techniques, underutilised functional foods are an important strategy for solving food security problems and maintaining the nutritional quality of the human diet. Rosa roxburghii Tratt (RRT) is a natural fruit that contains unique functional and nutritional constituents, which are characterised by a high anti-oxidant potential. This review summarises the biological characteristics, chemical composition, health-promoting properties and development status of RRT products to inspire investigations on the use of RRT fruit as a functional food, dietary supplement and pharmaceutical additive. The nutrients and functional ingredients of RRT fruit are described in detail to provide more reference information for nutritionists and pharmacists.
Collapse
Affiliation(s)
- Li-Tao Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Mu-Jie Lv
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Juan-Yan An
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Xiao-Hong Fan
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Ming-Zhu Dong
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Sun-Dong Zhang
- Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China
| | - Jian-Dong Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Yan-Qiu Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Zi-Hui Cai
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China. and Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China and Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, PR China
| |
Collapse
|
23
|
LIU Y, LI SM. Extraction optimization and antioxidant activity of Phyllanthus urinaria polysaccharides. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.11320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Zhang Y, Chen X, Hu P, Liao Q, Luo Y, Li J, Feng D, Zhang J, Wu Z, Xu H. Extraction, purification, and antioxidant activity of exopolysaccharides produced by Lactobacillus kimchi SR8 from sour meat in vitro and in vivo. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1883117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yulong Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Xueying Chen
- Yunyan District Center for Animal Disease Control, Guiyang, Guizhou, China
| | - Ping Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Qianwei Liao
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Yong Luo
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Juan Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Dandan Feng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Jun Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Zhaoqing Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Haoxiang Xu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
25
|
Xu Y, Yu C, Zeng Q, Yao M, Chen X, Zhang A. Assessing the potential value of Rosa Roxburghii Tratt in arsenic-induced liver damage based on elemental imbalance and oxidative damage. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1165-1175. [PMID: 32564172 DOI: 10.1007/s10653-020-00612-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Environmental exposure to arsenic is a major public health challenge worldwide. Growing evidence indicates that coal-burning arsenic can cause hepatic oxidative damage. However, the value of Rosa roxburghii Tratt (RRT) with antioxidant properties on arsenic-caused hepatic oxidative damage has never been elucidated yet. In this study, the animals were exposed to coal-burning arsenic (10 mg/kg bw) for 90 days and the result showed a loss of body weight, impaired liver function and liver diseases, increased hepatic oxidative damage and metabolic disorder of multiple elements including selenium, copper, zinc which were related to synthesis of antioxidant enzymes. Another finding is that RRT restored the abnormal liver function and alleviated the procedures of liver diseases of arsenic poisoning rats. In addition, it could also effectively reduce the degree of oxidative damage in serum and liver, and restore the activity of some antioxidant enzymes. Importantly, RRT reversed the content of most disordered elements caused by arsenic in liver and reduced the excretion of several essential elements in urine, including selenium, copper and zinc. Our study provides some limited evidence that RRT can alleviate coal-burning arsenic-induced liver damage induced by regulating elemental metabolic disorders and liver oxidation and antioxidant balance. The study provides a scientific basis for further studies of the causes of the arsenic-induced liver damage, and effective intervention strategies.
Collapse
Affiliation(s)
- Yuyan Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Chun Yu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
26
|
Cui R, Zhu F. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Wu H, Li M, Yang X, Wei Q, Sun L, Zhao J, Shang H. Extraction optimization, physicochemical properties and antioxidant and hypoglycemic activities of polysaccharides from roxburgh rose (Rosa roxburghii Tratt.) leaves. Int J Biol Macromol 2020; 165:517-529. [DOI: 10.1016/j.ijbiomac.2020.09.198] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022]
|
28
|
Yu S, Zhao Y, Zhang FL, Li YQ, Shen W, Sun ZY. Chestnut polysaccharides benefit spermatogenesis through improvement in the expression of important genes. Aging (Albany NY) 2020; 12:11431-11445. [PMID: 32568099 PMCID: PMC7343452 DOI: 10.18632/aging.103205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Recently there has been a continuing worldwide decrease in the quality of human spermatozoa, especially in spermatozoa motility and concentration. Many factors are involved in this decline, and great efforts have been made to rescue spermatogenesis; however, there has been little progress in the improvement of sperm quality. Chestnuts are used in traditional Chinese medicine; their major active components are chestnut polysaccharides (CPs). CPs have many biological activities but their effects on spermatogenesis are unknown. The current investigation was designed to explore the impact of CPs on spermatogenesis and the underlying mechanisms. We demonstrated that CPs significantly increased sperm motility and concentration (4-fold and 12-fold, respectively), and improved seminiferous tubule development by increasing the number of germ cells after busulfan treatment. CPs dramatically rescued the expression of important genes and proteins (STRA8, DAZL, SYCP1, SYCP3, TNP1 etc.) in spermatogenesis. Furthermore, CPs increased the levels of hormone synthesis proteins such as CYP17A1 and HSD17β1. All the data suggested that CPs improved the testicular microenvironment to rescue spermatogenesis. With CPs being natural products, they may be an attractive alternative for treating infertile patients in the future. At the same time, the deep underlying mechanisms of their action need to be explored.
Collapse
Affiliation(s)
- Shuai Yu
- Urology Department, Peking University Shenzhen Hospital, Shenzhen 518036, China.,Center for Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fa-Li Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ya-Qi Li
- Urology Department, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang 277100, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhong-Yi Sun
- Urology Department, Peking University Shenzhen Hospital, Shenzhen 518036, China.,Center for Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
29
|
New insight into bamboo shoot (Chimonobambusa quadrangularis) polysaccharides: Impact of extraction processes on its prebiotic activity. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Yang B, Wu Q, Luo Y, Yang Q, Wei X, Kan J. High-pressure ultrasonic-assisted extraction of polysaccharides from Hovenia dulcis: Extraction, structure, antioxidant activity and hypoglycemic. Int J Biol Macromol 2019; 137:676-687. [DOI: 10.1016/j.ijbiomac.2019.07.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
|
31
|
Li H, Tao Y, Zhao P, Zhi D, Gao X, Zhao X, Li M. Effect of ultrasound-assisted extraction on physicochemical properties and TLR2-affinity binding of the polysaccharides from Pholiota nameko. Int J Biol Macromol 2019; 135:1020-1027. [DOI: 10.1016/j.ijbiomac.2019.05.177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 01/23/2023]
|
32
|
Polysaccharide-Rich Fractions from Rosa rugosa Thunb.-Composition and Chemopreventive Potential. Molecules 2019; 24:molecules24071354. [PMID: 30959857 PMCID: PMC6480326 DOI: 10.3390/molecules24071354] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 11/17/2022] Open
Abstract
The huge health-beneficial potential of polysaccharides encourages the search for novel sources and applications of these compounds. One poorly explored source of polysaccharides is the rose. The content and biological activity of polysaccharides in rose organs is an almost completely unaddressed topic, therefore, polysaccharide-rich extracts (crude polysaccharides, CPLs) from petals, leaves, hips, and achenes of Rosa rugosa Thunb. were studied for their composition and the influence on various cellular processes involved in the development of cancer and other civilization diseases. The study revealed the presence of water-soluble and -insoluble polysaccharides (including β-glucans) and protein-polysaccharide conjugates in rose organs. Rose hips were found to be the most abundant source of polysaccharides. Different polysaccharide-rich extracts showed the ability to inhibit pro-inflammatory enzymes (COX-1, COX-2, hyaluronidase), a radical scavenging effect (against DPPH• and ABTS•+), and antiproliferative activity (in the A549 lung and SW480 colon cancer cell lines) in in vitro assays. Therefore, rose crude polysaccharides are very promising and can potentially be used as natural chemopreventive agents.
Collapse
|
33
|
Huang X, Yan H, Zhai L, Yang Z, Yi Y. Characterization of the Rosa roxburghii Tratt transcriptome and analysis of MYB genes. PLoS One 2019; 14:e0203014. [PMID: 30860996 PMCID: PMC6414006 DOI: 10.1371/journal.pone.0203014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/16/2019] [Indexed: 01/05/2023] Open
Abstract
Rosa roxburghii Tratt (Rosaceae) has a fruit that is flavorful, economically valuable, and highly nutritious, providing numerous health benefits. Myeloblastosis (MYB) proteins play key roles in the development and fruit quality of R. roxburghii. However, there is little available genomic and transcriptomic information for R. roxburghii. Here, a normalized cDNA library was constructed from five tissues, including the stem, leaf, flower, young fruit, and mature fruit, using the Illumina HiSeq 3000 platform. De novo assembly was performed, and 470.66 million clean reads were obtained. In total, 63,727 unigenes, with an average GC content of 42.08%, were discovered, 60,406 of which were annotated. In addition, 9,354 unigenes were assigned to Gene Ontology categories, and 20,202 unigenes were assigned to 25 Eukaryotic Ortholog Groups. Additionally, 19,508 unigenes were classified into 140 pathways of the Kyoto Encyclopedia of Genes and Genomes database. Based on the transcriptome, 163 unigenes associated with MYBs were detected. Among these genes, 75 genes were significantly expressed in the various tissues, including 10 R1 MYB, 42 R2R3 MYB, one R1R2R3 MYB, three R4 MYB and 19 atypical MYB-like proteins. The expression levels of the 12 MYB genes randomly selected for quantitative real-time PCR analysis corroborated the RNA sequencing results. A total of 37,545 microsatellites were detected, with an average expressed sequence tag–simple sequence repeat frequency of 0.59 (37,545/63,727). This transcriptome data improves our understanding of the role of MYB in R. roxburghii and will be valuable for identifying genes of interest.
Collapse
Affiliation(s)
- Xiaolong Huang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China /Key Laboratory of Plant Physiology and Developmental Regulation/ School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Huiqing Yan
- School of Life Sciences, Guizhou Normal University, Guiyang, China
- * E-mail: (HY); (YY)
| | - Lisheng Zhai
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China /Key Laboratory of Plant Physiology and Developmental Regulation/ School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Zhengting Yang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China /Key Laboratory of Plant Physiology and Developmental Regulation/ School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China /Key Laboratory of Plant Physiology and Developmental Regulation/ School of Life Sciences, Guizhou Normal University, Guiyang, China
- * E-mail: (HY); (YY)
| |
Collapse
|
34
|
Ye Y, Mo S, Feng W, Ye X, Shu X, Long Y, Guan Y, Huang J, Wang J. The ethanol extract of Involcucrum castaneae ameliorated ovalbumin-induced airway inflammation and smooth muscle thickening in guinea pigs. JOURNAL OF ETHNOPHARMACOLOGY 2019; 230:9-19. [PMID: 30359762 DOI: 10.1016/j.jep.2018.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/11/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Involucrum castaneae(IC)is used in Chinese folk medicine to treat various lung diseases, as well as for its reducing phlegm and anti-inflammatory properties. AIM OF THE STUDY The purpose of this experiment is to verify the effect of IC on airway inflammation, responsiveness in ovalbumin (OVA)-induced asthmatic guinea pigs. The main chemical components of IC were also analyzed. MATERIALS AND METHODS The potential of the ethanol extract of Involucrum castaneae (EEIC) to protect against OVA-induced allergic airway response in guinea pigs was investigated. The latency of asthma in guinea pigs were recorded after the allergic asthma induced. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of immunoglobulin E (IgE), interleukin-5 (IL-5), nerve growth factor (NGF) and interferon-γ (IFN-γ) in asthma allergy. Reverse transcription-PCR (RT-PCR) was used to detect the expression of IL-5 mRNA in asthmatic guinea pig lungs. Paraffin sections of lung tissue were used to analyze pathological changes. The total flavonoid content was determined and the chemical components were analyzed by LC-MS/MS. RESULTS It was found that EEIC was able to reduce the number of eosinophil (EOS) in bronchoalveolar lavage fluid (BALF) and peripheral blood (PB) in the guinea pig model of OVA -induced asthma. Meanwhile, it also significantly reduced the levels of inflammation-related factors IgE and IL-5, decreased the expression of IL-5 mRNA in lung tissue, and increased the level of IFN-γ. Pathological examination of paraffin section of lung tissue showed that EEIC can reduce the thickening of bronchial smooth muscle and reduce the infiltration damage of tissues by various inflammatory cells. The presence of flavonoids, terpenoids and phenolic compounds in EEIC might be responsible for these activities. CONCLUSION IC alleviated airway inflammation and smooth muscle thickening in guinea pigs with OVA-sensitized allergic asthma. The paper explains the traditional efficacy and material basis of IC and lays a foundation for further development.
Collapse
Affiliation(s)
- Yujie Ye
- The Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Shuyuan Mo
- College of Pharmacy, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan 430030, PR China
| | - Wenya Feng
- College of Pharmacy, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan 430030, PR China
| | - Xiaochun Ye
- Department of Pharmacy, the First Hospital of Wuhan, Wuhan 430022, PR China
| | - Xiang Shu
- Department of Pharmacy, the First Hospital of Wuhan, Wuhan 430022, PR China
| | - Yuxi Long
- College of Pharmacy, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan 430030, PR China
| | - Yeli Guan
- College of Pharmacy, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan 430030, PR China
| | - Jiangeng Huang
- College of Pharmacy, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan 430030, PR China
| | - Jianping Wang
- College of Pharmacy, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan 430030, PR China.
| |
Collapse
|
35
|
Development of a Combined Trifluoroacetic Acid Hydrolysis and HPLC-ELSD Method to Identify and Quantify Inulin Recovered from Jerusalem artichoke Assisted by Ultrasound Extraction. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8050710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|