1
|
Guo H, Wang S, Liu C, Xu H, Bao Y, Ren G, Yang X. Key phytochemicals contributing to the bitterness of quinoa. Food Chem 2024; 449:139262. [PMID: 38608613 DOI: 10.1016/j.foodchem.2024.139262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Despite its nutritional components and potential health benefits, the bitterness of quinoa seed limits its utilization in the food industry. Saponins are believed to be the main cause of the bitterness, but it is still uncertain which specific compound is responsible. This study aimed to isolate the main components contributing to the bitterness in quinoa seed by solvent extraction and various column chromatography techniques guided by sensory evaluation. Five compounds were identified by mass spectrometry and nuclear magnetic resonance analyses, with the dose-over-threshold factors from 29.03 to 198.89. The results confirmed that triterpenoids are responsible for the bitter taste in quinoa seed, with phytolaccagenic acid derivatives being the primary contributor. Additionally, kaempferol 3-O-(2″, 6″-di-O-α-rhamnopyranosyl)-β-galactopyranoside (namely mauritianin), was demonstrated for the first time to be associated with the bitterness of quinoa. This study could provide new insight into the bitter compound identification in quinoa.
Collapse
Affiliation(s)
- Huimin Guo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Siyu Wang
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Hongwei Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Yuying Bao
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Guixing Ren
- School of Life Science, Shanxi University, Taiyuan 030006, China; Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
2
|
LIU X, HU X, WU S, LIU J, WANG J. Extracts from sojae semen germinatum ameliorated carbon tetrachloride-induced liver injury in mice. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.126622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xiwei LIU
- Wuhan University of Science and Technology, China
| | - Xianmin HU
- Wuhan University of Science and Technology, China
| | - Shuzhe WU
- Wuhan University of Science and Technology, China
| | - Juan LIU
- Wuhan University of Science and Technology, China
| | - Jun WANG
- Wuhan University of Science and Technology, China
| |
Collapse
|
3
|
Dey P, Roy B, Mohanta R. A kaempferol derivative isolated from Lysimachia ramosa (Wall ex. Duby) induced alteration of acetyl cholinesterase and nitric oxide synthase in Raillietina echinobothrida. Vet Parasitol 2021; 296:109461. [PMID: 34214945 DOI: 10.1016/j.vetpar.2021.109461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Lysimachia ramosa has been used as a traditional medicine among the tribal population of Meghalaya, northeast India, for the control of helminthosis. The anthelmintic efficacy of L. ramosa has been documented earlier. In the present study, the active compound from L. ramosa has been isolated and identified using mass and NMR spectra. It's in vitro anthelmintic activity was evaluated against Raillietina echinobothrida, one of the most pathogenic cestode of domestic fowl. The isolated active compound was characterized to be a kaempferol derivative which showed potent anthelmintic activity against R. echinobothrida by changing surface ultrastructure and also inhibiting the activity of two neurotransmitter enzymes: acetyl cholinesterase (AChE) and nitric oxide synthase (NOS), both of which are known to perform dynamic roles in the intracellular communication mediated through neuromuscular system. Motility reduction, deformation in the surface architecture, extensive ultrastructural alterations and reduced histochemical stain intensity in both AChE and NOS was observed in the treated parasites. Biochemical result also revealed alteration in the enzyme activities in the treated parasites. Further, depletion in the nitric oxide (NO) production in the bioactive component exposed tissues of R. echinobothrida was also detected. The results provided evidence that the bioactive compound could be further explored to control helminthosis at a large scale.
Collapse
Affiliation(s)
- Paulomi Dey
- Parasitology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Bishnupada Roy
- Parasitology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| | - Rahul Mohanta
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| |
Collapse
|
4
|
Du YC, Lai L, Zhang H, Zhong FR, Cheng HL, Qian BL, Tan P, Xia XM, Fu WG. Kaempferol from Penthorum chinense Pursh suppresses HMGB1/TLR4/NF-κB signaling and NLRP3 inflammasome activation in acetaminophen-induced hepatotoxicity. Food Funct 2021; 11:7925-7934. [PMID: 32820776 DOI: 10.1039/d0fo00724b] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acetaminophen (APAP) is one of the safest and most effective over-the-counter (OTC) analgesics and antipyretics, but excessive doses of APAP will induce hepatotoxicity with high morbidity and mortality worldwide. Kaempferol (KA), a flavonoid compound derived from the medicinal and edible plant of Penthorum chinense Pursh, has been reported to exert a profound anti-inflammatory and antioxidant activity. In this study, we explored the protective effect and novel mechanism of KA against APAP-induced hepatotoxicity. The results revealed that KA pretreatment significantly reduced the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), relieved hepatocellular damage and apoptosis, attenuated the exhaustion of glutathione (GSH) and accumulation of malondialdehyde (MDA), increased the expression of antioxidative enzymes (e.g., heme oxygenase 1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1)), and thus restrained APAP-induced oxidative damage in the liver. KA suppressed the expression of NLRP3 and reduced the levels of pro-inflammatory factors, including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Moreover, KA remarkably inhibited high-mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4) expression as well as nuclear factor kappa-B (NF-κB) activation for liver protection against APAP-induced inflammatory responses and apoptosis. Taken together, our findings suggested that KA could effectively protect hepatocytes from APAP hepatotoxicity through the up-regulation of HO-1 and NQO1 expression, the down-regulation of NLRP3 expression, and the inhibition of the HMGB1/TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yi-Chao Du
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, China. and Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Li Lai
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Fu-Rui Zhong
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Huan-Li Cheng
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Bao-Lin Qian
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Peng Tan
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, China. and Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Xian-Ming Xia
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, China. and Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Wen-Guang Fu
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, China. and Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, China
| |
Collapse
|
5
|
Kumar A, Kaur V, Pandit K, Tuli HS, Sak K, Jain SK, Kaur S. Antioxidant Phytoconstituents From Onosma bracteata Wall. (Boraginaceae) Ameliorate the CCl 4 Induced Hepatic Damage: In Vivo Study in Male Wistar Rats. Front Pharmacol 2020; 11:1301. [PMID: 32973525 PMCID: PMC7472603 DOI: 10.3389/fphar.2020.01301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Onosma bracteata Wall. (Boraginaceae) is a highly valuable medicinal herb that is used for the treatment of fever, bronchitis, asthma, rheumatism, stomach irritation, and other inflammatory disorders. The present study aims to explore the hepatoprotective potential of ethanolic extract (Obeth) from O. bracteata aerial parts against carbon tetrachloride (CCl4) which causes hepatic damage in the male Wistar rats. Obeth showed effective radical quenching activity with an EC50 of 115.14 and 199.33 µg/mL in superoxide radical scavenging and lipid peroxidation analyses respectively along with plasmid DNA protective potential in plasmid nicking assay. The Obeth modulated mutagenicity of 2 Aminofluorine (2AF) in the pre-incubation mode of investigation (EC50 10.48 µg/0.1 mL/plate) in TA100 strain of Salmonella typhimurium. In in vivo studies, pretreatment of Obeth (50, 100, and 200 mg/kg) had the potential to normalize the biochemical markers aggravated by CCl4 (1mL/kg b.wt.) including liver antioxidative enzymes. Histopathological analysis also revealed the restoration of CCl4-induced liver histopathological alterations. Immunohistochemical studies showed that the treatment of Obeth downregulated the expression levels of p53 and cyclin D in hepatocytes. and downregulation in the Western blotting analysis revealed the downregulation of p-NF-kB, COX-2, and p53. HPLC data analysis showed the supremacy of major compounds namely, catechin, kaempferol, epicatechin, and Onosmin A in Obeth. The present investigation establishes the hepatoprotective and chemopreventive potential of O. bracteata against CCl4-induced hepatotoxicity via antioxidant defense system and modulation of the expression of proteins associated with the process of carcinogenesis in hepatic cells.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Varinder Kaur
- Indigenous Education and Research Centre, James Cook University, Townsville, QLD, Australia
| | - Kritika Pandit
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | | | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
6
|
TF-343 Alleviates Diesel Exhaust Particulate-Induced Lung Inflammation via Modulation of Nuclear Factor- κB Signaling. J Immunol Res 2019; 2019:8315845. [PMID: 31781683 PMCID: PMC6875297 DOI: 10.1155/2019/8315845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Inhalation of diesel exhaust particulate (DEP) causes oxidative stress-induced lung inflammation. This study investigated the protective effects of TF-343, an antioxidant and anti-inflammatory agent, in mouse and cellular models of DEP-induced lung inflammation as well as the underlying molecular mechanisms. Mice were intratracheally instilled with DEP or vehicle (0.05% Tween 80 in saline). TF-343 was orally administered for 3 weeks. Cell counts and histological analysis of lung tissue showed that DEP exposure increased the infiltration of neutrophils and macrophages in the peribronchial/perivascular/interstitial regions, with macrophages harboring black pigments observed in alveoli. TF-343 pretreatment reduced lung inflammation caused by DEP exposure. In an in vitro study using alveolar macrophages (AMs), DEP exposure reduced cell viability and increased the levels of intracellular reactive oxygen species and inflammatory genes (IL-1β, inhibitor of nuclear factor- (NF-) κB (IκB), and Toll-like receptor 4), effects that were reduced by TF-343. A western blot analysis showed that the IκB degradation-induced increase in NF-κB nuclear localization caused by DEP was reversed by TF-343. In conclusion, TF-343 reduces DEP-induced lung inflammation by suppressing NF-κB signaling and may protect against adverse respiratory effects caused by DEP exposure.
Collapse
|
7
|
Antioxidant, Gastroprotective, Cytotoxic Activities and UHPLC PDA-Q Orbitrap Mass Spectrometry Identification of Metabolites in Baccharis grisebachii Decoction. Molecules 2019; 24:molecules24061085. [PMID: 30893865 PMCID: PMC6472192 DOI: 10.3390/molecules24061085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022] Open
Abstract
The decoction of the local plant Baccharis grisebachii is used as a digestive, gastroprotective, external cicatrizing agent and antiseptic in Argentine. A lyophilized decoction (BLD) from the aerial parts of this plant was evaluated regarding its anti-ulcer, antioxidant and cytotoxic activities and the bioactivities were supported by UHPLC-MS metabolome fingerprinting which revealed the presence of several small bioactive compounds. The antioxidant properties were evaluated by DPPH, TEAC, FRAP and lipoperoxidation inhibition in erythrocytes methods, and the antibacterial activity was evaluated according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The BLD showed a moderate free radical scavenging activity in the DPPH (EC50 = 106 µg/mL) and lipid peroxidation in erythrocytes assays (67%, at 250 µg/mL). However, the BLD had the highest gastroprotective effect at a dose of 750 mg/kg with a ninety-three percent inhibition of damage through a mechanism that involve NO and prostaglandins using the ethanol-induced gastric damage in a standard rat model. On the other hand, BLD does not induce cytotoxic changes on human tumor and no-tumor cell lines at the concentrations assayed. Regarding the metabolomic analysis, thirty-one compounds were detected and 30 identified based on UHPLC-OT-MS including twelve flavonoids, eleven cinnamic acid derivatives, one coumarin, one stilbene and two other different phenolic compounds. The results support that the medicinal decoction of Baccharis grisebachii is a valuable natural product with gastroprotective effects and with potential to improve human health that opens a pathway for the development of important phytomedicine products.
Collapse
|