1
|
Lu H, Ni SQ. Review on sterilization techniques, and the application potential of phage lyase and lyase immobilization in fighting drug-resistant bacteria. J Mater Chem B 2024; 12:3317-3335. [PMID: 38380677 DOI: 10.1039/d3tb02366d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Many human health problems and property losses caused by pathogenic contamination cannot be underestimated. Bactericidal techniques have been extensively studied to address this issue of public health and economy. Bacterial resistance develops as a result of the extensive use of single or multiple but persistent usage of sterilizing drugs, and the emergence of super-resistant bacteria brings new challenges. Therefore, it is crucial to control pathogen contamination by applying innovative and effective sterilization techniques. As organisms that exist in nature and can specifically kill bacteria, phages have become the focus as an alternative to antibacterial agents. Furthermore, phage-encoded lyases are proteins that play important roles in phage sterilization. The in vitro sterilization of phage lyase has been developed as a novel biosterilization technique to reduce bacterial resistance and is more environmentally friendly than conventional sterilization treatments. For the shortcomings of enzyme applications, this review discusses the enzyme immobilization methods and the application potential of immobilized lyases for sterilization. Although some techniques provide effective solutions, immobilized lyase sterilization technology has been proven to be a more effective innovation for efficient pathogen killing and reducing bacterial resistance. We hope that this review can provide new insights for the development of sterilization techniques.
Collapse
Affiliation(s)
- Han Lu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Guo L, Zhao P, Yao Z, Li T, Zhu M, Wang Z, Huang L, Niyazi G, Liu D, Rong M. Inactivation of Salmonella enteritidis on the surface of eggs by air activated with gliding arc discharge plasma. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Non-thermal techniques and the “hurdle” approach: How is food technology evolving? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Jiang H, Lin Q, Shi W, Yu X, Wang S. Food preservation by cold plasma from dielectric barrier discharges in agri-food industries. Front Nutr 2022; 9:1015980. [PMID: 36466425 PMCID: PMC9709125 DOI: 10.3389/fnut.2022.1015980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Cold plasma (CP) can be defined as partially or wholly ionized gas carrying myriads of highly reactive products, such as electrons, negative ions, positive ions, free radicals, excited or non-excited atoms, and photons at ambient temperature. It is generated at 30-60°C under atmospheric or reduced pressure (vacuum). In contrast to thermal plasma, it requires less power, exhibits electron temperatures much higher than the corresponding gas (macroscopic temperature), and does not present a local thermodynamic equilibrium. Dielectric barrier discharges (DBD) are one of the most convenient and efficient methods to produce CP. SCOPE AND APPROACH Cold plasma technology has the potential to replace traditional agri-food processing purification methods because of its low energy requirements and flexible system design. CP technology works by reducing bacteria levels and removing pests and mycotoxins from your produce at harvest. It can also catalyze physiological and biochemical reactions and modify materials. It can meet microbial food safety standards, improve the physical, nutritional, and sensory characteristics of the products, preserve unstable bioactive compounds, and modulate enzyme activities. This manuscript also discusses the quality characteristics of food components before/after CP treatment. KEY FINDINGS AND CONCLUSION In the past decade, CP treatments of food products have experienced increased popularity due to their potential contributions to non-thermal food processing. There is no doubt that CP treatment is a flexible approach with demonstrated efficacy for controlling many risks across food and agricultural sustainability sectors. In addition, CP technologies also can be applied in food-related areas, including modification of chemical structures and desensitization treatments. There is a need to fully assess the benefits and risks of stand-alone CP unit processes or their integration as a processing chain as soon as the economic, ecological, and consumer benefits and acceptability are considered.
Collapse
Affiliation(s)
- Hao Jiang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Qian Lin
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Wenqing Shi
- Shanxi Rural Science and Technology Development Centre, Xi’an, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
5
|
Wang J, Fu T, Sang X, Liu Y. Effects of high voltage atmospheric cold plasma treatment on microbial diversity of tilapia (Oreochromis mossambicus) fillets treated during refrigeration. Int J Food Microbiol 2022; 375:109738. [DOI: 10.1016/j.ijfoodmicro.2022.109738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
|
6
|
Yepez X, Illera AE, Baykara H, Keener K. Recent Advances and Potential Applications of Atmospheric Pressure Cold Plasma Technology for Sustainable Food Processing. Foods 2022; 11:foods11131833. [PMID: 35804648 PMCID: PMC9265751 DOI: 10.3390/foods11131833] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
In a circular economy, products, waste, and resources are kept in the system as long as possible. This review aims to highlight the importance of cold plasma technology as an alternative solution to some challenges in the food chain, such as the extensive energy demand and the hazardous chemicals used. Atmospheric cold plasma can provide a rich source of reactive gas species such as radicals, excited neutrals, ions, free electrons, and UV light that can be efficiently used for sterilization and decontamination, degrading toxins, and pesticides. Atmospheric cold plasma can also improve the utilization of materials in agriculture and food processing, as well as convert waste into resources. The use of atmospheric cold plasma technology is not without challenges. The wide range of reactive gas species leads to many questions about their safety, active life, and environmental impact. Additionally, the associated regulatory approval process requires significant data demonstrating its efficacy. Cold plasma generation requires a specific reliable system, process control monitoring, scalability, and worker safety protections.
Collapse
Affiliation(s)
- Ximena Yepez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador;
- Correspondence:
| | - Alba E. Illera
- Faculty of Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain;
| | - Haci Baykara
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador;
- Escuela Superior Politécnica del Litoral, ESPOL, Center of Nanotechnology Research and Development (CIDNA), Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador
| | - Kevin Keener
- College of Engineering and Physical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
7
|
Molina-Hernandez JB, Laika J, Peralta-Ruiz Y, Palivala VK, Tappi S, Cappelli F, Ricci A, Neri L, Chaves-López C. Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes ( Solanum lycopersicum L.). Foods 2022; 11:210. [PMID: 35053942 PMCID: PMC8774998 DOI: 10.3390/foods11020210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 01/27/2023] Open
Abstract
This research aimed to evaluate the impact of atmospheric cold plasma (ACP) treatment on the fungal spores naturally present in sundried tomatoes, as well as their influence on the physico-chemical properties and antioxidant activity. ACP was performed with a Surface Dielectric Barrier Discharge (SDBD), applying 6 kV at 23 kHz and exposure times up to 30 min. The results showed a significant reduction of mesophilic aerobic bacteria population and of filamentous fungi after the longer ACP exposure. In particular, the effect of the treatment was assessed on Aspergillus rugulovalvus (as sensible strain) and Aspergillus niger (as resistant strain). The germination of the spores was observed to be reliant on the species, with nearly 88% and 32% of non-germinated spores for A. rugulovalvus and A. niger, respectively. Fluorescence probes revealed that ACP affects spore viability promoting strong damage to the wall and cellular membrane. For the first time, the sporicidal effect of ACP against A. rugulovalvus is reported. Physicochemical parameters of sundried tomatoes such as pH and water activity (aw) were not affected by the ACP treatment; on the contrary, the antioxidant activity was not affected while the lycopene content was significantly increased with the increase in ACP exposure time (p ≤ 0.05) probably due to increased extractability.
Collapse
Affiliation(s)
- Junior Bernardo Molina-Hernandez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.-H.); (J.L.); (Y.P.-R.); (V.K.P.); (A.R.); (L.N.)
| | - Jessica Laika
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.-H.); (J.L.); (Y.P.-R.); (V.K.P.); (A.R.); (L.N.)
| | - Yeimmy Peralta-Ruiz
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.-H.); (J.L.); (Y.P.-R.); (V.K.P.); (A.R.); (L.N.)
- Programa de Ingeniería Agroindustrial, Facultad de Ingeniería, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Vinay Kumar Palivala
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.-H.); (J.L.); (Y.P.-R.); (V.K.P.); (A.R.); (L.N.)
| | - Silvia Tappi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
- Inter-Departmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | | | - Antonella Ricci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.-H.); (J.L.); (Y.P.-R.); (V.K.P.); (A.R.); (L.N.)
| | - Lilia Neri
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.-H.); (J.L.); (Y.P.-R.); (V.K.P.); (A.R.); (L.N.)
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.-H.); (J.L.); (Y.P.-R.); (V.K.P.); (A.R.); (L.N.)
| |
Collapse
|
8
|
Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Szczepańska J, Pinto CA, Skąpska S, Saraiva JA, Marszałek K. Effect of static and multi-pulsed high pressure processing on the rheological properties, microbial and physicochemical quality, and antioxidant potential of apple juice during refrigerated storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Prithviraj V, Pandiselvam R, Babu AC, Kothakota A, Manikantan M, Ramesh S, Beegum PS, Mathew A, Hebbar K. Emerging non-thermal processing techniques for preservation of tender coconut water. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
The application of a novel non-thermal plasma device with double rotary plasma jets for inactivation of Salmonella Enteritidis on shell eggs and its effects on sensory properties. Int J Food Microbiol 2021; 355:109332. [PMID: 34358812 DOI: 10.1016/j.ijfoodmicro.2021.109332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/03/2021] [Accepted: 07/18/2021] [Indexed: 01/07/2023]
Abstract
Consumer awareness and distaste towards both bacterial and chemical contaminations on food items have been increasing in recent years. Non-thermal plasma (NTP) is a cutting-edge technology which has been shown to effectively inactivate bacteria on the treated foods. Although the general NTP with a single plasma jet is appropriate for the continuous operation process, it suffers limitations due to its smaller scanning area. Here, a novel NTP device with a double rotary nozzle jet system was utilized, which could treat an area instead of a point. The shell eggs inoculated with Salmonella enterica serotype Enteritidis (SE) were placed on a moving platform under the double rotary nozzle jet system. The efficacy of the NTP treatment on microbial decontamination was evaluated by testing a total of 26 combinations of operating parameters consisting of various plasma power (150, 180, 210 W), argon flow rate (10, 15, 20 slm), repetition of the moving platform (4, 6, 8 times), and speed of the moving platform (5, 10 mm/s). Although significantly higher SE reduction (p < 0.05) was achieved with higher power, more repetitions, larger argon flow rates, and lower speed of the platform, these parameters induced significant alterations in the sensory properties of the treated eggs. By comprehensively considering the bacterial reductions, egg quality, and sensory properties, NTP treatment with combination T (180 W-15 slm-6 times-10 mm/s) was determined to be the optimal parameter, which achieved >4 log CFU/egg of SE reduction and significantly better sensory properties than commercially washed eggs (p < 0.05). Additionally, SEM analysis revealed that NTP treatment with combination T resulted in less damage to egg cuticles compared to commercially washed eggs. This novel NTP device offers an efficient antibacterial activity under shorter exposure time (30 s), smaller argon flow rate (15 slm), and lower power (180 W) without adversely affecting the overall quality of the treated eggs. Therefore, this NTP device equipped with the double rotary jet system possesses a potential solution for future industrial applications.
Collapse
|
13
|
Targino de Souza Pedrosa G, Pimentel TC, Gavahian M, Lucena de Medeiros L, Pagán R, Magnani M. The combined effect of essential oils and emerging technologies on food safety and quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Kaavya R, Pandiselvam R, Abdullah S, Sruthi N, Jayanath Y, Ashokkumar C, Chandra Khanashyam A, Kothakota A, Ramesh S. Emerging non-thermal technologies for decontamination of Salmonella in food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Lin CM, Herianto S, Syu SM, Song CH, Chen HL, Hou CY. Applying a large-scale device using non-thermal plasma for microbial decontamination on shell eggs and its effects on the sensory characteristics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Gavahian M, Sarangapani C, Misra NN. Cold plasma for mitigating agrochemical and pesticide residue in food and water: Similarities with ozone and ultraviolet technologies. Food Res Int 2021; 141:110138. [PMID: 33642005 DOI: 10.1016/j.foodres.2021.110138] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/27/2022]
Abstract
Pesticide and agrochemical residues in food and water are among hazardous chemicals that are associated with adverse health effects. Consequently, technologies for pesticide abatement in food and water remain in focus. Cold plasma is an emerging decontamination technology, that is being increasingly explored for the abatement of agrochemical and pesticide residue in food and water. In some cases, rapid and complete degradation of pesticide residues has come to light. Such promising results encourage exploring scale-up and commercialization. To achieve this, unraveling mechanisms involved in plasma decontamination and the nature of degradation products is needed. The present review identifies the mechanisms involved in plasma- assisted removal of pesticide residues from food and water, draws parallels with mechanism of ozone and ultraviolet technologies, investigates the chemistry of the intermediates and degradates, and identifies some future research needs. The review recognizes that mechanisms involved in plasma processes have overlapping similarities to those identified for ozone and ultraviolet light, involving oxidation by hydroxyl radical and photo-oxidation. The toxicity of intermediates and degradates in plasma processing have not received much attention. The safety aspects of end products form plasma led degradation of pesticides should be considered for practical exploitation. Identification of intermediates and degradation products, recognition of most potent plasma species, understanding the influence of co-existing entities, the energy efficiency of plasma reactors, and the process economics deserve research focus.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC.
| | - Chaitanya Sarangapani
- School of Food Science and Environmental health, Technological University Dublin, Dublin, Ireland
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
17
|
Gavahian M, Pallares N, Al Khawli F, Ferrer E, Barba FJ. Recent advances in the application of innovative food processing technologies for mycotoxins and pesticide reduction in foods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Ganesan AR, Tiwari U, Ezhilarasi PN, Rajauria G. Application of cold plasma on food matrices: A review on current and future prospects. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15070] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Abirami R. Ganesan
- School of Applied Sciences College of Engineering, Science and Technology Fiji National University Nasinu Fiji Islands
| | - Uma Tiwari
- School of Food Science and Environmental Health Technological University Dublin Dublin Ireland
| | - P. N. Ezhilarasi
- Institute of Food Safety and Health Illinois Institute of Technology Chicago IL USA
| | - Gaurav Rajauria
- School of Agriculture and Food Science Lyons Research Farm University College Dublin Celbridge Co. Kildare Ireland
| |
Collapse
|
19
|
Meng X, Song T, Chen C, Zhang H, Pan Z, Wang J. Evaluation of Pressurized Inert Gas Treatments on the Postharvest Quality of Blueberries. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02525-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Gavahian M, Sheu F, Tsai M, Chu Y. The effects of dielectric barrier discharge plasma gas and plasma‐activated water on texture, color, and bacterial characteristics of shiitake mushroom. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14316] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center Food Industry Research and Development Institute Hsinchu Taiwan, ROC
| | - Fang‐Hwa Sheu
- Product and Process Research Center Food Industry Research and Development Institute Hsinchu Taiwan, ROC
| | - Meng‐Jen Tsai
- Product and Process Research Center Food Industry Research and Development Institute Hsinchu Taiwan, ROC
| | - Yan‐Hwa Chu
- Product and Process Research Center Food Industry Research and Development Institute Hsinchu Taiwan, ROC
| |
Collapse
|