1
|
Llano S, Vaillant F, Santander M, Zorro-González A, González-Orozco CE, Maraval I, Boulanger R, Escobar S. Exploring the Impact of Fermentation Time and Climate on Quality of Cocoa Bean-Derived Chocolate: Sensorial Profile and Volatilome Analysis. Foods 2024; 13:2614. [PMID: 39200541 PMCID: PMC11353615 DOI: 10.3390/foods13162614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The market for fine-flavor cocoa provides significant benefits to farmers. However, identifying the sensory qualities of chocolate under specific environmental conditions and measuring how its chemical compounds may be affected by climate differences and postharvesting practices remain a challenge. This study investigates how fermentation time and agroclimatic conditions in Colombia's fine cocoa-producing region of Arauca influence the sensory profile and volatile compound composition (volatilome) of chocolate derived from cocoa beans. Sensory evaluation was conducted on chocolates fermented for 48, 72, 96, and 120 h, revealing that fermentation time critically affects the development of fine-flavor attributes, particularly fruitiness and nuttiness. The optimal fermentation period to enhance these attributes was identified at 96 h, a duration consistently associated with peak fruitiness under all studied climatic conditions. Analysis of 44 volatile compounds identified several key aroma markers, such as acetoin, 1-methoxy-2-propyl acetate, and various pyrazines, which correlate with desirable sensory attributes. These compounds exhibited varying amounts depending on fermentation time and specific agroclimatic conditions, with a 96 h fermentation yielding chocolates with a higher quantity of volatile compounds associated with preferred attributes. Our findings highlight the complex interaction between fermentation processes and agroclimatic factors in determining cocoa quality, providing new insights into optimizing the flavor profiles of chocolate.
Collapse
Affiliation(s)
- Sandra Llano
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira and La Libertad—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.); (F.V.); (M.S.); (A.Z.-G.); (C.E.G.-O.)
| | - Fabrice Vaillant
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira and La Libertad—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.); (F.V.); (M.S.); (A.Z.-G.); (C.E.G.-O.)
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement—CIRAD, UMR QualiSud, 1, F-34398 Montpellier, France; (I.M.); (R.B.)
- UMR Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, F-34000 Montpellier, France
| | - Margareth Santander
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira and La Libertad—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.); (F.V.); (M.S.); (A.Z.-G.); (C.E.G.-O.)
| | - Andrés Zorro-González
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira and La Libertad—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.); (F.V.); (M.S.); (A.Z.-G.); (C.E.G.-O.)
| | - Carlos E. González-Orozco
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira and La Libertad—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.); (F.V.); (M.S.); (A.Z.-G.); (C.E.G.-O.)
| | - Isabelle Maraval
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement—CIRAD, UMR QualiSud, 1, F-34398 Montpellier, France; (I.M.); (R.B.)
- UMR Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, F-34000 Montpellier, France
| | - Renaud Boulanger
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement—CIRAD, UMR QualiSud, 1, F-34398 Montpellier, France; (I.M.); (R.B.)
- UMR Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, F-34000 Montpellier, France
| | - Sebastián Escobar
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira and La Libertad—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.); (F.V.); (M.S.); (A.Z.-G.); (C.E.G.-O.)
| |
Collapse
|
2
|
Kurzyna-Szklarek M, Cybulska J, Zdunek A. Analysis of the chemical composition of natural carbohydrates - An overview of methods. Food Chem 2022; 394:133466. [PMID: 35716502 DOI: 10.1016/j.foodchem.2022.133466] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
Natural carbohydrates are gaining importance over a wide spectrum of human activity due to their versatile functionalities. The properties of carbohydrates are currently used in many branches of industry and new possibilities of their utilization, like in medicine or materials science, are demonstrated systematically. The attractive properties of carbohydrates result from their chemical structure and ability to form macromolecules and derivatives. Each application of carbohydrate requires a knowledge of their chemical composition, which due to the number and differentiation of monosaccharides and their spatial forms is often challenging. This review presents an overview on sample preparation and the methods used for the determination of the fine chemical structure of natural carbohydrates. Most popular and reliable colorimetric, chromatographic and spectroscopic methods are presented with an emphasis on their pros and cons.
Collapse
Affiliation(s)
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
3
|
Lin LY, Chen KF, Changchien LL, Chen KC, Peng RY. Volatile Variation of Theobroma cacao Malvaceae L. Beans Cultivated in Taiwan Affected by Processing via Fermentation and Roasting. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103058. [PMID: 35630547 PMCID: PMC9145787 DOI: 10.3390/molecules27103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/02/2022]
Abstract
After being harvested, cacao beans are usually subjected to very complex processes in order to improve their chemical and physical characteristics, like tastefulness with chocolate characteristic flavors. The traditional process consists of three major processing stages: fermentation, drying, and roasting, while most of the fermentation is carried out by an on-farm in-box process. In Taiwan, we have two major cocoa beans, the red and the yellow. We proposed that the major factor affecting the variation in tastes and colors in the finished cocoa might be the difference between cultivars. To uncover this, we examined the effect of the three major processes including fermentation, drying and roasting on these two cocoa beans. Results indicated that the two cultivars really behaved differently (despite before or after processing with fermentation, drying, and roasting) with respect to the patterns of fatty acids (palmitic, stearic, oleic, and arachidonic); triacylglycerols:1,2,3-trioleoyl-glycerol (OOO); 1-stearoyl-2,3-oleoyl-glycerol (SOO); 1-stearoyl-sn-2-oleoyl-3-arachidoyl- glycerol (SOA); 1,3-distearyol-sn-2-oleoyl-glycerol (SOS); organic acids (citric, tartaric, acetic, and malic); soluble sugars (glucose and fructose); amino acids; total phenolics; total flavonoids; and volatiles. Our findings suggest that to choose specific processing conditions for each specific cocoa genotype is the crucial point of processing cocoa with consistent taste and color.
Collapse
Affiliation(s)
- Li-Yun Lin
- Department of Food and Applied Technology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (L.-Y.L.); (K.-F.C.)
| | - Kwei-Fan Chen
- Department of Food and Applied Technology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (L.-Y.L.); (K.-F.C.)
| | - Lin-Ling Changchien
- Department of Physical Therapy, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan;
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Xin St., Taipei 11031, Taiwan;
- Department of Urology, Taipei Medical University Shuang-Ho Hospital, 250, Wu-Xin St., Xin-Yi District, Taipei 11031, Taiwan
- Correspondence:
| | - Robert Y. Peng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Xin St., Taipei 11031, Taiwan;
- Research Institute of Biotechnology, School of Health Care, Hungkuang University, 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan
| |
Collapse
|
4
|
Gu Z, Chen X, Rao J, Chen B. Statistical evaluation to validate matrix-matched calibration for standardized beany odor compound quantitation in yellow pea flour using HS-SPME-GC-MS. Food Funct 2022; 13:3968-3981. [PMID: 35293919 DOI: 10.1039/d2fo00050d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Accurate and precise quantitation of beany odor compounds is important in developing yellow pea (Pisum sativum L., YP) flour-based foods. Aiming at establishing standardized external calibration using an internal standard (ECIS) quantitation method, the effect of solvent extraction on matrix deodorization and systematic statistical analysis on quantitation was evaluated. Initially, accelerated dichloromethane extraction on YP flour and starch produced two clearest deodorized matrix-matched matrices. Secondly, due to the heteroskedasticity, weighted least squares regression (WLSR) was introduced to build calibration curves. The curve linearity and regression parameters were further confirmed via a t-test. Lastly, methodology indicators including LOD/LOQ, accuracy and precision, and the matrix effect (ME) were assessed. Results showed that there were no significant differences in the quantity of beany odor compounds interpolated from two deodorized matrices. This study demonstrated for the first time that despite the unignorable ME, deodorized starch is a feasible and affordable alternative to deodorized YP flour in the quantitation of beany odor compounds to achieve a reliable result.
Collapse
Affiliation(s)
- Zixuan Gu
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, USA.
| | - Xiao Chen
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, USA.
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, USA.
| |
Collapse
|
5
|
High-Performance Liquid Chromatography Determination of Free Sugars and Mannitol in Mushrooms Using Corona Charged Aerosol Detection. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01863-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractRefractive index detector is usually used in the analysis of sugars in mushrooms, which is characterized by poor sensitivity, reproducibility, and susceptibility to interference from co-eluting sample components. In the current study, identification and determination of free sugars in mushroom samples by high-performance liquid chromatography coupled to corona charged aerosol detector (HPLC-CAD) were presented for the first time. The best chromatographic separation was performed on a Shodex Asahipak NH2P-50 4E 5 μm and mobile phase composed of 75% acetonitrile and 25% water with flow rate was 1 mL/min. The developed method offers good linearity in concentration range 0.001–0.01 or 0.01–0.2 mg/mL for tested compounds with R2 > 0.99. Limit of detection (LOD) for analytes was in the range of 7.1–120.2 ng on column. HPLC-CAD method showed very good reproducibility (RSD < 5.1%). Fructose, mannitol, and glucose were detected in all examined mushroom samples. For white Agaricus bisporus, mannitol was the most abundant sugar (7.575 mg/g dw), whereas trehalose for Pleurotus ostreatus (3.426 mg/g dw). The developed method was successfully applied for quantification of free sugars and mannitol in mushrooms. The optimized method proved to be sensitive, reproducible, and accurate.
Collapse
|
6
|
Gil M, Ruiz P, Quijano J, Londono-Londono J, Jaramillo Y, Gallego V, Tessier F, Notario R. Effect of temperature on the formation of acrylamide in cocoa beans during drying treatment: An experimental and computational study. Heliyon 2020; 6:e03312. [PMID: 32072041 PMCID: PMC7016235 DOI: 10.1016/j.heliyon.2020.e03312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/31/2019] [Accepted: 01/24/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of this work was to determine the effect of temperature on the formation of acrylamide in cocoa beans during drying treatment by an experimental and computational study, in order to assess the presence of this neoformed compound from postharvest stage. The computational study was conducted on the reaction between fructose, glyoxal from glucose, and on asparagine at the M06-2X/6-31+G(d,p) level, under cocoa bean drying conditions at 323.15 to 343.15 K. The proposed reaction for acrylamide formation consisted of seven steps, which required to progress a via cyclic transition state of the four members. In addition, step III (decarboxylation) was considered to be the rate-determining step. Glucose followed an E1-like elimination and fructose exhibited an E1cb-like elimination. Computational model showed that the reaction of acrylamide formation was favored by fructose rather than glucose. The content of reducing sugars, asparagine and acrylamide in fermented and dried cocoa from two subregions of Antioquia-Colombia, as well as roasted cocoa, were evaluated by UHPLC-C-CAD and UHPLC-QqQ. The concentrations of monosaccharides measured at the end of the fermentation and drying process of cocoa nibs showed greater decreases in the levels of fructose as compared to glucose, supporting the main model hypothesis. Acrylamide formation only occurred in Bajo Cauca due to the presence of both precursors and fast drying time (72 h). Finally, it was possible to find the conditions to which acrylamide can be formed from the drying process and not only from roasting, information that can be used for future control strategies.
Collapse
Affiliation(s)
- Maritza Gil
- Grupo de investigación de Ingeniería de Alimentos GRIAL. Corporación Universitaria Lasallista. Caldas, Antioquia, Colombia
- Laboratorio de Fisicoquímica Orgánica, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín AP 3840, Medellín, Colombia
- Instituto Tecnológico Metropolitano, Facultad de Ciencias Exactas y Aplicadas, Medellín, Colombia
| | - Pablo Ruiz
- Laboratorio de Fisicoquímica Orgánica, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín AP 3840, Medellín, Colombia
- Instituto Tecnológico Metropolitano, Facultad de Ciencias Exactas y Aplicadas, Medellín, Colombia
| | - Jairo Quijano
- Laboratorio de Fisicoquímica Orgánica, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín AP 3840, Medellín, Colombia
| | | | - Yamilé Jaramillo
- Grupo de investigación de Ingeniería de Alimentos GRIAL. Corporación Universitaria Lasallista. Caldas, Antioquia, Colombia
| | - Vanessa Gallego
- Grupo de investigación de Ingeniería de Alimentos GRIAL. Corporación Universitaria Lasallista. Caldas, Antioquia, Colombia
| | - Frederic Tessier
- Faculty of Medicine - University of Lille, 59655 Villeneuve d'Ascq, France
| | - Rafael Notario
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|