1
|
Sengar AS, Alves S, Pojić M, Tiwari BK, Tomičić Z, Banjac V, Tiwari U, Pathania S. Osborne fractionation and techno-functional properties of Faba bean flours from eight varieties grown under a temperate maritime climate. Food Chem 2025; 483:144347. [PMID: 40245623 DOI: 10.1016/j.foodchem.2025.144347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Faba bean (Vicia faba) is a high-protein crop, well-suited as a break crop for cereal rotations with high nitrogen-fixing ability. This study provides comprehensive characterisation encompassing agronomic, nutritional and techno-functional properties of faba bean varieties (4 spring-sown and 4 winter-sown) and explores different protein fractions recovery using Osborne fractionation method. All varieties investigated are suited to cultivate in a temperate maritime climate, especially the winter-sown varieties produced a higher average yield (6.0 t/ha) compared to spring-sown varieties (5.0 t/ha). 'CARTOUCHE' flour exhibited the highest protein content (33.01 %), and all flours were rich in lysine (1.75 to 1.43 g/100 g of flour). 'TUNDRA' flour showed highest peak viscosity (PV, 541 cP). The Osborne fractionation yielded albumins (15.08 to 19.45 %) along with the highest protein composition (84.17 to 88.79 %) of the total protein recovery. Overall, faba bean flours could be used as functional ingredient in addition to its source of alternative proteins.
Collapse
Affiliation(s)
- Animesh Singh Sengar
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland; School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland
| | - Sheila Alves
- Teagasc Department of Crop Science, Oak Park, R93 XE12 Carlow, Ireland
| | - Milica Pojić
- University of Novi Sad, Institute of Food Technology, Novi Sad, Serbia
| | | | - Zorica Tomičić
- University of Novi Sad, Institute of Food Technology, Novi Sad, Serbia
| | - Vojislav Banjac
- University of Novi Sad, Institute of Food Technology, Novi Sad, Serbia
| | - Uma Tiwari
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland
| | - Shivani Pathania
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland.
| |
Collapse
|
2
|
Xiong W, Devkota L, Dhital S. Substitution of wheat semolina with intact chickpea cells: A study on extruded pasta quality. Food Res Int 2025; 202:115687. [PMID: 39967147 DOI: 10.1016/j.foodres.2025.115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/08/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Intact cells, e.g. isolated from chickpea (intact chickpea cells, ICC) is getting attention as a new functional ingredient for lowering the glycaemic response. ICC applied to various foods, e.g. bread, biscuits and noodles, that do not require high shear, have shown improved nutritional functionality. However, the retention of cell intactness at high shear operation, e.g. extrusion, is not known. Thus, the manuscripts investigate the application of ICC in pasta replacing the wheat semolina (30 %) at three extrusion screw speeds of 200, 400 and 600 rpm. The control pasta was made from either 100 % semolina or 30 % semolina with chickpea flour (CF), where almost all intact cellular structure is broken. Based on the confocal laser microscopic observation, ICC retained cellular integrity at extrusion speeds from 200 to 600 rpm, leading to reduction in starch digestibility of pasta (55.28-64.46 %) compared to semolina (75.14-84.09 %) and CF-blended pasta (64.53-74.65 %). CF and ICC substituted pasta had higher protein and dietary fibre content, but lower starch content compared to semolina-based pasta. The physiochemical analysis including X-ray diffraction (XRD), thermal properties and pasting properties for the starch structure in pasta samples showed that the shear force leads to the disruption of starch structure during the extrusion process and is dependent upon the screw speed. Cooking properties demonstrated reduced optimum cooking times and increased cooking loss with chickpea substitutions, influenced by different chemical compositions and weaker gluten networks. Overall, substituting semolina with CF and ICC alters pasta's nutritional profile and cooking behaviour, highlighting potential applications in functional food development.
Collapse
Affiliation(s)
- Weiyan Xiong
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Lavaraj Devkota
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| |
Collapse
|
3
|
Eb C, Vy I, Mi C. Nutritional and Functional Characterization of Chia Expeller and Gluten-Free Flours as Ingredients for Premixes. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:43. [PMID: 39847179 DOI: 10.1007/s11130-025-01297-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
The growing consumer demand for healthier foods that help reduce the risk of chronic diseases has driven the food industry to innovate with nutritionally and technologically viable products. This trend and the nutritional gaps in gluten-free diets have spurred the exploration of unconventional, high-quality ingredients like flour from pseudocereals, legumes, and oilseeds. This study evaluated the nutritional and functional profiles of chia expeller and flours from buckwheat, green/yellow peas, and rice to study their potential as techno-functional ingredients for new gluten-free premixes. Chia expeller, rich in protein, lipids, and fiber, with a notable fatty acid profile -particularly α-linolenic and linoleic acids- and significant levels of Ca, Mg, Fe, Zn, Cu, P, and Na, emerged as a standout ingredient. It also demonstrated remarkable water-binding functionality. Pea flours were notable for their high protein, Ca, Cl, Fe, and linoleic acid content. Meanwhile, rice and buckwheat flours were distinguished by their carbohydrate and oleic acid content. Buckwheat also provides substantial Mg and Zn, while rice flour stood out for its higher brightness. These findings underscore the potential of these flours to contribute to the development of functional foods tailored to meet specific nutritional needs and consumer preferences for healthier options. The distinct functional properties of each flour type can contribute to making targeted formulations, improving the technological properties of gluten-free products.
Collapse
Affiliation(s)
- Coronel Eb
- UNCPBA, Facultad de Ingeniería, Departamento de Ingeniería Química y Tecnología de los Alimentos, TECSE, Olavarría, Buenos Aires, Argentina
- CONICET, Olavarría, Buenos Aires, Argentina
| | - Ixtaina Vy
- Centro de Investigación y Desarrollo en Ciencia y Tecnología de los Alimentos (CIDCA), Facultad de Ciencias Exactas (UNLP), CONICET La Plata, CICPBA, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales (UNLP), La Plata, Buenos Aires, Argentina
| | - Capitani Mi
- UNCPBA, Facultad de Ingeniería, Departamento de Ingeniería Química y Tecnología de los Alimentos, TECSE, Olavarría, Buenos Aires, Argentina.
- CONICET, Olavarría, Buenos Aires, Argentina.
- , Avenida del Valle 5737, Olavarría, Buenos Aires, B7400JWI, Argentina.
| |
Collapse
|
4
|
Yang C, Leong SY, King J, Kim EHJ, Morgenstern MP, Peng M, Agyei D, Sutton K, Oey I. Texture Evaluation and In Vivo Oral Tactile Perceptions of Cooked Wheat Pasta Sheets Partially Substituted with Pea Protein. Foods 2024; 13:3798. [PMID: 39682871 DOI: 10.3390/foods13233798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Plant proteins are increasingly incorporated into food products to enhance their nutritional value. However, little is known about how this alters the textural perceptions of such products. This study investigated the substitution of up to 35% wheat flour with pea protein isolate (PPI) into pasta sheets to determine how this influenced texture. Furthermore, an in vivo human mastication test (n = 116 participants) was conducted to evaluate oral tactile perceptions (perceived firmness, stickiness, and brittleness) and chewing time associated with PPI-containing pasta. Cooked pasta hardness decreased from 145 to 96 N at 5% PPI substitution due to the disruption of gluten network but increased to 144 N at 15-25% PPI substitution, indicating a stronger protein network at higher PPI substitution levels. In vivo, pasta substituted with 25% PPI required a shorter chewing time and was perceived as less firm, less sticky, and more brittle than wheat flour-only pasta. Regardless of pasta samples, fast chewers (average chewing time ≤13 s) were better at recognizing differences in pasta firmness, while slow chewers (>13 s) were more sensitive to changes in stickiness and brittleness. The results obtained in this study could contribute to the design of protein-rich pasta tailored to populations with specific texture requirements (e.g., softer texture for the elderly).
Collapse
Affiliation(s)
- Chengyi Yang
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Sze Ying Leong
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Jessie King
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Esther H-J Kim
- Riddet Institute, Palmerston North 4442, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Marco P Morgenstern
- Riddet Institute, Palmerston North 4442, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Mei Peng
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Kevin Sutton
- Riddet Institute, Palmerston North 4442, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| |
Collapse
|
5
|
Singla D, Malik T, Singh A, Thakur S, Kumar P. Advances in understanding wheat-related disorders: A comprehensive review on gluten-free products with emphasis on wheat allergy, celiac and non-celiac gluten sensitivity. FOOD CHEMISTRY ADVANCES 2024; 4:100627. [DOI: 10.1016/j.focha.2024.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Teterycz D, Sobota A. Use of High-Protein and High-Dietary-Fibre Vegetable Processing Waste from Bell Pepper and Tomato for Pasta Fortification. Foods 2023; 12:2567. [PMID: 37444305 DOI: 10.3390/foods12132567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
There is worldwide wastage of 1.3 billion tons of food annually. It is recommended that food waste should be reduced at every phase of production. By-products from food processing have high nutritional value so their use in new products is advisable. The aim of the study was to enrich the nutritional value of pasta using waste from the food industry. By-products from tomato processing (tomato waste-TW) and pepper (defatted pepper seeds-DPS, pepper placenta-PP) were used at a level of 10-30% to produce pasta. The farinographic characteristics, chemical composition, cooking quality, and colour of the pasta were studied. The results show a significant (p < 0.05), up to 27%, increase in the protein content of the TW30 samples, compared with the control (16.16% d.m. vs. 20.61% d.m.). The TDF content increased over five times in DPS30 and TW30 (27.99% d.m. and 25.44% d.m.). The amino acid composition of the pasta improved with the fortification but failed to achieve complete protein by FAO. The DPS30, PP20, PP30 and all TW samples can be considered high-protein products according to the EU definition (a minimum of 20% energy from protein). Vegetable waste can be a valuable additive for the improvement of the nutritional value of food.
Collapse
Affiliation(s)
- Dorota Teterycz
- Department of Plant Food Technology and Gastronomy, Division of Engineering and Cereals Technology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Aldona Sobota
- Department of Plant Food Technology and Gastronomy, Division of Engineering and Cereals Technology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
7
|
Quintieri L, Nitride C, De Angelis E, Lamonaca A, Pilolli R, Russo F, Monaci L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients 2023; 15:nu15061509. [PMID: 36986239 PMCID: PMC10054669 DOI: 10.3390/nu15061509] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The increasing size of the human population and the shortage of highly valuable proteinaceous ingredients has prompted the international community to scout for new, sustainable, and natural protein resources from invertebrates (e.g., insects) and underutilized legume crops, unexploited terrestrial and aquatic weeds, and fungi. Insect proteins are known for their nutritional value, being rich in proteins with a good balance of essential amino acids and being a valuable source of essential fatty acids and trace elements. Unconventional legume crops were found rich in nutritional, phytochemical, and therapeutic properties, showing excellent abilities to survive extreme environmental conditions. This review evaluates the recent state of underutilized legume crops, aquatic weeds, fungi, and insects intended as alternative protein sources, from ingredient production to their incorporation in food products, including their food formulations and the functional characteristics of alternative plant-based proteins and edible insect proteins as novel foods. Emphasis is also placed on safety issues due to the presence of anti-nutritional factors and allergenic proteins in insects and/or underutilized legumes. The functional and biological activities of protein hydrolysates from different protein sources are reviewed, along with bioactive peptides displaying antihypertensive, antioxidant, antidiabetic, and/or antimicrobial activity. Due to the healthy properties of these foods for the high abundance of bioactive peptides and phytochemicals, more consumers are expected to turn to vegetarianism or veganism in the future, and the increasing demand for such products will be a challenge for the future.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Chiara Nitride
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
8
|
Tachie C, Nwachukwu ID, Aryee ANA. Trends and innovations in the formulation of plant-based foods. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023. [DOI: 10.1186/s43014-023-00129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
AbstractGlobally, the production, distribution, sale and consumption of plant-based foods (PBFs) are on the increase due to heightened consumer awareness, a growing demand for clean label products, widespread efforts to promote and embrace sustainable practices, and ethical concerns over animal-derived counterparts. This has led to the exploration of several strategies by researchers and the food industry to develop alternative milk, cheese, meat, and egg products from various plant-based sources using technologies such as precision fermentation (PF), scaffolding, extrusion, and muscle fibre simulation. This work explores current alternative protein sources and PBFs, production trends, innovations in formulation, nutritional quality, as well as challenges restricting full utilization and other limitations. However, PBFs have several limitations which constrain their acceptance, including the beany flavour of legumes, concerns about genetically modified foods, cost, nutritional inadequacies associated micronutrient deficiencies, absence of safety regulations, and the addition of ingredients that are contrary to their intended health-promoting purpose. The review concludes that investing in the development of PBFs now, has the potential to facilitate a rapid shift to large scale consumption of sustainable and healthy diets in the near future.
Graphical Abstract
Collapse
|
9
|
Blandino M, Bresciani A, Locatelli M, Loscalzo M, Travaglia F, Vanara F, Marti A. Pulse type and extrusion conditions affect phenolic profile and physical properties of extruded products. Food Chem 2023; 403:134369. [DOI: 10.1016/j.foodchem.2022.134369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
|
10
|
3D printing of salmon fillet mimic: Imparting printability via high-pressure homogenization and post-printing texturisation via transglutaminase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
11
|
Influence of lupin and chickpea flours on acrylamide formation and quality characteristics of biscuits. Food Chem 2023; 402:134221. [DOI: 10.1016/j.foodchem.2022.134221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
|
12
|
Hoehnel A, Bez J, Amarowicz R, Arendt EK, Zannini E. Combining high-protein ingredients from pseudocereals and legumes for the development of fresh high-protein hybrid pasta: maintained technological quality and adequate sensory attributes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4977-4987. [PMID: 33280110 DOI: 10.1002/jsfa.10994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/28/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The fortification of cereal foods, like pasta, with pseudocereal and legume ingredients promises a substantial improvement of their nutritional quality. However, partial replacement of wheat by pseudocereals and legumes in pasta formulations bears challenges regarding the products' technological and sensory quality. This study investigates the partial replacement of wheat semolina by a combination of high-protein ingredients (HPIs) from buckwheat, faba bean and lupin to reach a protein level of 20% of calories provided by protein. This high-protein hybrid pasta (HPHP) formulation was subjected to a thorough evaluation of technological quality characteristics and compared to regular wheat pasta and pasta formulations containing the single HPIs. Additionally, descriptive sensory profiling was performed to compare organoleptic properties of HPHP with regular wheat pasta. RESULTS The quality of pasta formulations containing single HPIs was significantly reduced with regard to at least one of the determined quality characteristics. For the HPHP formulation containing all three HPIs, the technological quality was found to be equal to regular wheat pasta. No significant differences were detected for the most indicative quality characteristics cooking loss, firmness and stickiness. This was attributed primarily to compensating effects of the HPIs with respect to different quality characteristics. Sensory analysis revealed only slightly inferior overall quality of HPHP in comparison to regular wheat pasta, especially promoted by similar textural properties. CONCLUSION The combination of selected HPIs offers the opportunity to produce high-protein hybrid pasta with technological and sensory quality similar to regular wheat pasta at a level of wheat semolina replacement of 25%. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrea Hoehnel
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Jürgen Bez
- Fraunhofer Institute for Process Engineering and Packaging, Freising, Germany
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
De Angelis D, Squeo G, Pasqualone A, Summo C. Optimization of formulation and physicochemical, nutritional and sensory evaluation of vegan chickpea-based salad dressings. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2685-2693. [PMID: 35734110 PMCID: PMC9206952 DOI: 10.1007/s13197-021-05288-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 06/15/2023]
Abstract
UNLABELLED The formulation of a vegan salad dressing supplemented with chickpea flour (VC-SD) was optimized by D-optimal mixture design, evaluating the effect of chickpea flour, water and oil on the textural properties of the product. The linear models showed the best fitting and predictive ability, as highlighted by high R2 adj and Q2. The Cox-effects of the textural parameters were significant for water and chickpea flour contents, but not for oil. Sensory evaluation indicated that all the VC-SD were characterized by the predominance of pungent/acid odor notes, whereas sourness was the most perceived fundamental taste, together with a sensation of a grainy texture in mouth due to flour particles. Overall, the product can be consumed by vegans and vegetarians because produced without animal-derived ingredients, and is in synergy with the healthful characteristics of Mediterranean diet, in which pulses and extra-virgin olive oil play beneficial roles. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-021-05288-x.
Collapse
Affiliation(s)
- Davide De Angelis
- Department of Soil, Plant and Food Science, Food Science and Technology Section (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science, Food Science and Technology Section (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science, Food Science and Technology Section (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science, Food Science and Technology Section (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
14
|
Babacan Cevik S, Kahraman K, Ekici L. Production of oven-baked wheat chips enriched with red lentil: an optimization study by response surface methodology. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2243-2254. [PMID: 35602450 PMCID: PMC9114193 DOI: 10.1007/s13197-021-05237-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/09/2021] [Accepted: 08/09/2021] [Indexed: 05/28/2023]
Abstract
UNLABELLED Chips are the most common snacks in human diet and generally are produced by frying. However, due to their high carbohydrate, fat and salt content, they are considered as unhealthy snacks. In this study, it is aimed to develop red lentil enriched chips for use as a healthy and nutritious snack food. Due to the health concerns about high fat content of the fried chips, the samples were oven-baked instead of frying. Response surface methodology was used to investigate the effect of process parameters (red lentil flour ratio, baking temperature and time) on physicochemical, textural, nutritional, and bioactive properties of the chips. The samples were also evaluated in terms of taste, odor, crispness, and general acceptance by the panelists. The highest antioxidant capacity, total phenolic content and hydroxymethyl furfural content was achived with the sample supplememented with 50% red lentil flour and baked at the highest temperature and time used in the study (190 °C, 9 min). Red lentil flour supplementation increased protein and resistant starch content of the chips. The highest resistant starch content of the samples and lowest in vitro glycemic index value were achieved with the sample prepared with 50% red lentil flour supplementation. These results of this study proved that red lentil is a good source to be used for enrichment of oven-baked wheat chips as a novel snack food with high nutritional values and low in vitro glycemic index. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-021-05237-8.
Collapse
Affiliation(s)
- Selin Babacan Cevik
- Department of Food Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Kevser Kahraman
- Department of Material Science and Nanotechology Engineering, Abdullah Gul University, 38039 Kayseri, Turkey
| | - Lutfiye Ekici
- Department of Food Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| |
Collapse
|
15
|
Subramani D, Kumaraguruparaswami M, Muthusamy H, Arunachalam S, Shanmugam G. Formulation and quality evaluation of quinoa enriched ready to cook string hoppers (Indian traditional noodles). JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Suo X, Dall'Asta M, Giuberti G, Minucciani M, Wang Z, Vittadini E. The effect of chickpea flour and its addition levels on quality and in vitro starch digestibility of corn-rice-based gluten-free pasta. Int J Food Sci Nutr 2022; 73:600-609. [PMID: 35168444 DOI: 10.1080/09637486.2022.2040008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Development of gluten-free (GF) pasta with improved nutritional attributes is one of the main trends in the gluten-free pasta industry. Considerable interest lays in introducing legume-based ingredients into traditional corn/rice GF formulations. This work aims to fortify multi-cereal (corn-rice) GF pasta with chickpea to investigate how different chickpea addition levels affect its quality and in vitro starch digestibility. Chickpea significantly increased pasta protein and dietary fibre contents to a level that supports the "source" or "high" fibre/protein content claims. Chickpea addition induced darkening, softening, adhesiveness decrease and solid loss reduction compared to the control. In addition, chickpea substitution significantly modified the in vitro starch digestion, which showed increasing resistant starch and decreasing slowly digestible starch contents suggesting potential mitigation of postprandial glucose response in vivo. Reformulating GF pasta with chickpea flour should, therefore, be considered as an effective tool to improve the corn-rice-based GF products' nutritional profile.
Collapse
Affiliation(s)
- Xinying Suo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.,School of Food and Bioengineering, Collaborative Innovation Centre of Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Margherita Dall'Asta
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Zhangcun Wang
- School of Food and Bioengineering, Collaborative Innovation Centre of Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Elena Vittadini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| |
Collapse
|
17
|
New ingredients and alternatives to durum wheat semolina for a high quality dried pasta. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Kamali Rousta L, Pouya Ghandehari Yazdi A, Khorasani S, Tavakoli M, Ahmadi Z, Amini M. Optimization of novel multigrain pasta and evaluation of physicochemical properties: using D-optimal mixture design. Food Sci Nutr 2021; 9:5546-5556. [PMID: 34646524 PMCID: PMC8498078 DOI: 10.1002/fsn3.2514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
D-optimal mixture design looked to be a priceless tool for optimizing the influences of semolina flour (SF), defatted soy flour (DSF), whole quinoa flour (WQF), whole rye flour (WRF), whole oat flour (WOF), whole barley flour (WBF), and rice flour (RF) on the quality attributes of multigrain pasta (MP). Multigrain flours were considered as the independent variables evaluated with respect to three response variables containing hardness and the amount of protein and fiber. Quadratic, linear, and linear models were chosen to explain the hardness and the amount of protein and fiber of the MPs, respectively. In optimal formulation of MP, that is, SF (57.34%,), DSF (14%), WQF (11%), WRF (7.54%), WOF (5.61%), WBF (2.51%), and RF (2%), the content of fiber and protein enhanced more than 4.12 and 1.34 times compared with SP, respectively. Therefore, according to the European Union law, it can be claimed that this pasta is a source of fiber. As the amount of protein and fiber increased, the hardness and optimal cooking time decreased, while the cooking loss increased. After cooking, MP was murkier and less yellow in color. The 2, 2- diphenyl- 1- picrylhydrazyl (DPPH) inhibition activity of the MP was about 2.5 times higher than the SP. Analysis of the antioxidant properties of the samples after cooking showed that the DPPH inhibition activity of the SP and MP reduced. The results indicated that the overall acceptability of MP was higher than SP. Based on our findings, these multigrain flours are probable to be applied as nutritious complements in the pasta industry to improve the functional characteristics.
Collapse
Affiliation(s)
- Leila Kamali Rousta
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| | | | - Sepideh Khorasani
- Department of Food Science and TechnologyFaculty of Agriculture, Research and Technology Institute of Plant Production (RTIPP)Shahid Bahonar University of KermanKermanIran
| | - Mohammad Tavakoli
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| | - Zahra Ahmadi
- Department of Food Science and TechnologyFerdowsi University of MashhadMashhadIran
| | - Mahdi Amini
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| |
Collapse
|
19
|
Romano A, Gallo V, Ferranti P, Masi P. Lentil flour: nutritional and technological properties, in vitro digestibility and perspectives for use in the food industry. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Current Trends in Enrichment of Wheat Pasta: Quality, Nutritional Value and Antioxidant Properties. Processes (Basel) 2021. [DOI: 10.3390/pr9081280] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Wheat pasta is one of the most important cereal products and is becoming increasingly popular worldwide because of its convenience, simple formulation, long shelf life, and high energetic value. Wheat pasta is usually obtained from refined flour rich in carbohydrates but with low content of phytochemicals, micronutrients, and fibre. The increased demand of consumers for healthy foods has generated interest among both researchers and food producers in developing functional food products. This review showcases the current trends in pasta fortification. Changes in the nutritional value, cooking quality, sensory attributes, and antioxidant properties of durum and common wheat pasta enriched with both plant and animal raw materials are discussed.
Collapse
|
21
|
Jakubczyk A, Kiersnowska K, Ömeroğlu B, Gawlik-Dziki U, Tutaj K, Rybczyńska-Tkaczyk K, Szydłowska-Tutaj M, Złotek U, Baraniak B. The Influence of Hypericum perforatum L. Addition to Wheat Cookies on Their Antioxidant, Anti-Metabolic Syndrome, and Antimicrobial Properties. Foods 2021; 10:1379. [PMID: 34203621 PMCID: PMC8232325 DOI: 10.3390/foods10061379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to characterize wheat cookies enriched with 0.5% and 1.0% of Hypericum perforatum L. (St. John's wort, SJW) and determine their pro-health properties in vitro after hydrolysis in simulated gastrointestinal conditions. The results indicated that 1.0 SJW was characterized by the highest content of polyphenols, flavonoids, and phenolic acids (2.32 mg mL-1, 4.93 µg mL-1, and 12.35 µg mL-1, respectively). The enriching cookies had no effect on water absorption capacity (WAC) and oil absorption capacity (OAC). After in vitro hydrolysis, the highest peptide content was noted in 1.0 SJW (0.52 mg mL-1), and the bioactive compounds were characterized by high potential bioaccessibility (PAC), but poor bioavailability (PAV). The addition of SJW increased the ACE, α-amylase, and LOX inhibitory effect, but reduced the inhibition of pancreatic lipase. The highest antioxidant activity was noted for 1.0 SJW. The results showed that only 0.5 SJW and 1.0 SJW had slight antimicrobial activity against E. coli ATCC 25922 and B. cereus ATCC 14579 with MIC = 12.5 mg mL-1. Fractions with molecular mass <3.0 kDa were characterized with the highest p-coumaric acid content. The results show that SJW cookies had a higher content of bioactive compounds and more potent anti-metabolic syndrome effects.
Collapse
Affiliation(s)
- Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.J.); (U.G.-D.); (M.S.-T.); (B.B.)
| | - Kaja Kiersnowska
- Scientific Students Group of Food Biochemistry and Nutrition, Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Begümhan Ömeroğlu
- Department of Nutrition and Dietetics, Marmara Üniversitesi Göztepe Yerleşkesi, Kadıköy/İstanbul 34722, Turkey;
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.J.); (U.G.-D.); (M.S.-T.); (B.B.)
| | - Krzysztof Tutaj
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences in Lublin, St. Leszczyńskiego 7, 20-069 Lublin, Poland;
| | - Magdalena Szydłowska-Tutaj
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.J.); (U.G.-D.); (M.S.-T.); (B.B.)
| | - Urszula Złotek
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.J.); (U.G.-D.); (M.S.-T.); (B.B.)
| | - Barbara Baraniak
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.J.); (U.G.-D.); (M.S.-T.); (B.B.)
| |
Collapse
|
22
|
Acquah C, Ohemeng-Boahen G, Power KA, Tosh SM. The Effect of Processing on Bioactive Compounds and Nutritional Qualities of Pulses in Meeting the Sustainable Development Goal 2. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.681662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diversification of plant-based food sources is necessary to improve global food and nutritional security. Pulses have enormous nutritional and health benefits in preventing malnutrition and chronic diseases while contributing positively to reducing environmental footprint. Pulses are rich in diverse nutritional and non-nutritional constituents which can be classified as bioactive compounds due to their biological effect. These bioactive compounds include but are not limited to proteins, dietary fibres, resistant starch, polyphenols, saponins, lectins, phytic acids, and enzyme inhibitors. While these compounds are of importance in ensuring food and nutritional security, some of the bioactive constituents have ambivalent properties. These properties include having antioxidant, anti-hypertensive and prebiotic effects. Others have a deleterious effect of decreasing the digestibility and/or bioavailability of essential nutrients and are therefore termed antinutritional factors/compounds. Various processing techniques exist to reduce the content of antinutritional factors found in pulses. Traditional processing of pulses comprises soaking, dehulling, milling, germination, fermentation, and boiling, while examples of emerging processing techniques include microwaving, extrusion, and micronization. These processing techniques can be tailored to purpose and pulse type to achieve desired results. Herein, the nutritional qualities and properties of bioactive compounds found in pulses in meeting the sustainable development goals are presented. It also discusses the effect of processing techniques on the nutritional and non-nutritional constituents in pulses as well as the health and environmental benefits of pulse-diet consumption. Major challenges linked to pulses that could limit their potential of being ideal crops in meeting the sustainable development goal 2 agenda are highlighted.
Collapse
|
23
|
Zarzycki P, Teterycz D, Wirkijowska A, Kozłowicz K, Stasiak DM. Use of moldavian dragonhead seeds residue for pasta production. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
In vitro digestibility, cooking quality, bio-functional composition, and sensory properties of pasta incorporated with potato and pigeonpea flour. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2020.100300] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Teterycz D, Sobota A, Przygodzka D, Łysakowska P. Hemp seed (Cannabis sativa L.) enriched pasta: Physicochemical properties and quality evaluation. PLoS One 2021; 16:e0248790. [PMID: 33735229 PMCID: PMC7971538 DOI: 10.1371/journal.pone.0248790] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
Hemp seed (Cannabis sativa L.) contain large amounts of nutrients, e.g. protein, dietary fiber, minerals, and unsaturated fatty acids, which make them a good fortifying component in food production. The aim of the present study was to determine the effect of hemp addition on the physicochemical properties, cooking quality, texture parameters and sensory properties of durum wheat pasta. The samples were fortified with 5-40% of commercially available hemp flour or 2.5-10% of hemp cake obtained from hemp seed oil pressing. Our study showed that the addition of hemp seed raw materials led to an increase in the protein, total dietary fiber (TDF), ash and fat content in the pasta samples. Due to its lower granulation and higher nutritional value, hemp flour was found to be a better raw material for the fortification of pasta than hemp cake. Pasta enriched with hemp flour at the level of 30-40% contains 19.53-28.87% d.m. of protein and 17.02-21.49% d.m. of TDF and according to the EU, a definition can be described as a high-protein and high-fiber products. All enriched pasta samples were also characterized by safe Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) content, and their sensory properties were accepted by consumers.
Collapse
Affiliation(s)
- Dorota Teterycz
- Department of Plant Food Technology and Gastronomy, Division of Engineering and Cereals Technology, University of Life Sciences in Lublin, Lublin, Poland
| | - Aldona Sobota
- Department of Plant Food Technology and Gastronomy, Division of Engineering and Cereals Technology, University of Life Sciences in Lublin, Lublin, Poland
- * E-mail:
| | - Dominika Przygodzka
- Chair and Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| | - Paulina Łysakowska
- Department of Plant Food Technology and Gastronomy, Division of Engineering and Cereals Technology, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
26
|
Chakraborty R, Sabruna S, Roy R, Majumdar S, Roy S. Banana pseudostem substitution in wheat flour biscuits enriches the nutritional and antioxidative properties with considerable acceptability. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-03988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractBiscuits prepared from composite flours substituted with unconventional plant resources have been considered important for enriching the overall nutritional quality. The present study was undertaken to explore the potential of banana pseudostem flour for the valorization of wheat flour biscuits. At the same time, the study attempts to address the problem of bioresource wastage as huge amounts of banana pseudostem are wasted every year after harvesting of the fruits. In this study, composite flours were prepared by partially substituting wheat flour with banana pseudostem core flour (BPF10, BPF20, BPF30) in different proportions (10, 20, 30% w/w), and biscuits were prepared from these composite flour formulations. Analyses of the physicochemical properties, pasting properties, colour and texture, quantification of phytochemicals and antioxidant properties, and overall sensory evaluation of the flours and biscuits were performed for comparative evaluation. BPF-substituted composite flours showed higher moisture and ash content, pasting temperature and water and oil absorption capacity. BPF-fortified biscuits were found to be rich in ash content, protein, proline, antioxidative phytochemicals, viz. phenols, flavonoids, tannins, ascorbate, and alkaloids, whereas fat, moisture content, and viscosity were comparatively lower than that of the control (wheat flour biscuits). Significant free radical scavenging activities of the BPF-substituted biscuits were also observed. Colour and texture analysis showed desirable changes in lightness (L*), yellowness (b*), chroma (C*), fracturability, and hardness of the BPF-substituted biscuits. Most importantly, considering the sensory characteristics like taste and crispiness, control and BPF10 biscuits were highly comparable. Therefore, the formulation of BPF-substituted biscuits presents an effective way to utilize banana pseudostems, which is also rich in nutraceutical and antioxidative properties.
Collapse
|
27
|
Kamali Rousta L, Ghandehari Yazdi AP, Amini M. Optimization of athletic pasta formulation by D-optimal mixture design. Food Sci Nutr 2020; 8:4546-4554. [PMID: 32884734 PMCID: PMC7455935 DOI: 10.1002/fsn3.1764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to produce an athletic pasta by the addition of various sources of protein. For this purpose, D-optimal mixture design used for optimization of formulation of athletic pasta and protein with considering the hardness as main parameter. Various properties of the optimized formulation were evaluated. The optimal formulation contained 45.41% of semolina, 24% of pea protein isolate (PPI), 18% of oat flour (OF), 5% of soy protein isolate (SPI), 5% whey protein isolate (WPI), and 2% of gluten (G). In optimized formulation, the protein content increased by more than 2.9 times compared to control with the hardness in the range (569 g). Hardness, optimal cooking time, and cooking loss of products increased as the level of protein increased. The optimal formulation had a higher sensory acceptance than the control, which is probably related to color changes. Due to the amount and biological value of the proteins used and the high acceptance obtained, this formulation can be suggested for athletes. The obtained results indicated that production of athletic pasta with high biological value by using mixture of SPI, PPI, WPI, OF, and G is possible.
Collapse
Affiliation(s)
- Leila Kamali Rousta
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| | | | - Mahdi Amini
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| |
Collapse
|
28
|
Sobota A, Wirkijowska A, Zarzycki P. Application of vegetable concentrates and powders in coloured pasta production. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14521] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aldona Sobota
- Division of Engineering and Cereals Technology Department of Plant Food Technology and Gastronomy University of Life Sciences in Lublin Skromna 8 20‐704 Lublin Poland
| | - Anna Wirkijowska
- Division of Engineering and Cereals Technology Department of Plant Food Technology and Gastronomy University of Life Sciences in Lublin Skromna 8 20‐704 Lublin Poland
| | - Piotr Zarzycki
- Division of Engineering and Cereals Technology Department of Plant Food Technology and Gastronomy University of Life Sciences in Lublin Skromna 8 20‐704 Lublin Poland
| |
Collapse
|