1
|
Yim D. Uses of Chemical Technologies for Meat Decontamination. Food Sci Anim Resour 2025; 45:1-12. [PMID: 39840244 PMCID: PMC11743839 DOI: 10.5851/kosfa.2024.e102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 01/23/2025] Open
Abstract
Traditional meat preservation techniques such as smoking, drying, and salting have various shortcomings and limitations in effectively reducing microbial loads and maintaining meat quality. Consequently, chemical compounds have gained attention as promising alternatives for decontamination, offering the potential to extend shelf life and minimize physical, chemical, and sensory changes in meat. Chlorine-based compounds, trisodium phosphate, organic acids, bacteriocins, lactoferrin, and peracetic acid are technologies of recent industrial applications that inhibit spoilage and pathogenic microorganisms in meat. This review explores the critical aspects of decontamination and assesses the efficacy of different chemical compounds employed in meat preservation. These compounds exhibit strong microorganism inactivation capabilities, ensuring minimal alterations to the meat matrix and substantially reducing environmental impact.
Collapse
Affiliation(s)
- Donggyun Yim
- Department of Animal Science, Kyungpook National University, Sangju 37224, Korea
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|
2
|
Akdaşçi E, Eker F, Duman H, Singh P, Bechelany M, Karav S. Lactoferrin as a Versatile Agent in Nanoparticle Applications: From Therapeutics to Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2018. [PMID: 39728554 PMCID: PMC11728633 DOI: 10.3390/nano14242018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Nanoparticles (NPs) have emerged as a potent choice for various applications, from drug delivery to agricultural studies, serving as an alternative and promising methodology for future advancements. They have been widely explored in delivery systems, demonstrating immense promise and high efficiency for the delivery of numerous biomolecules such as proteins and anticancer agents, either solely or modified with other compounds to enhance their capabilities. In addition, the utilization of NPs extends to antimicrobial studies, where they are used to develop novel antibacterial, antifungal, and antiviral formulations with advanced characteristics. Lactoferrin (Lf) is a glycoprotein recognized for its significant multifunctional properties, such as antimicrobial, antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. Its activity has a broad distribution in the human body, with Lf receptors present in multiple regions. Current research shows that Lf is utilized in NP technology as a surface material, encapsulated biomolecule, and even as an NP itself. Due to the abundance of Lf receptors in various regions, Lf can be employed as a surface material in NPs for targeted delivery strategies, particularly in crossing the BBB and targeting specific cancers. Furthermore, Lf can be synthesized in an NP structure, positioning it as a strong candidate in future NP-related applications. In this article, we explore the highlighted and underexplored areas of Lf applications in NPs research.
Collapse
Affiliation(s)
- Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (F.E.); (H.D.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (F.E.); (H.D.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (F.E.); (H.D.)
| | - Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (F.E.); (H.D.)
| |
Collapse
|
3
|
Gu H, Wang Y, Wang Y, Ding L, Huan W, Yang Y, Fang F, Cui W. Global Bibliometric and Visualized Analysis of Research on Lactoferrin from 1978 to 2024. Mol Nutr Food Res 2024; 68:e2400379. [PMID: 39044343 DOI: 10.1002/mnfr.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/02/2024] [Indexed: 07/25/2024]
Abstract
SCOPE Lactoferrin (LF) is an iron-bound protein with a molecular weight of about 80 kDa. LF has many biological functions such as antibacterial, antiviral, immunomodulatory, and anticancer. The purpose of this study is to explore the research trend of LF through bibliometric analysis. METHODS AND RESULTS The search is conducted in the Web of Science Core Collection database, and then the publications information of LF related literature is exported. Based on CiteSpace and VOSviewer software, countries, institutions, authors, journals, keywords, and so on are analyzed. Since 1987, a total of 9382 literature have been included, and the number of papers related to LF has increased year by year. These publications come mainly from 124 countries and 725 institutions. Of the 1256 authors analyzed, Valenti Piera is the one with the most publications. The burst strength of gut microbiota, antioxidant, nanoparticles, and in vitro digestion are 21.3, 15.63, 23.03, and 13.51, respectively. They represent the frontier of research in this field and are developing rapidly. CONCLUSION This study shows that LF has important research value. The study of LF nanoparticles and the effects of LF on the gut microbiota are an emerging field that helps to explore new research directions.
Collapse
Affiliation(s)
- Hong Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yiming Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yating Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Liyi Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Wenru Huan
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yuting Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Fang Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| |
Collapse
|
4
|
Jańczuk A, Brodziak A, Czernecki T, Król J. Lactoferrin-The Health-Promoting Properties and Contemporary Application with Genetic Aspects. Foods 2022; 12:foods12010070. [PMID: 36613286 PMCID: PMC9818722 DOI: 10.3390/foods12010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of the study is to present a review of literature data on lactoferrin's characteristics, applications, and multiple health-promoting properties, with special regard to nutrigenomics and nutrigenetics. The article presents a new approach to food ingredients. Nowadays, lactoferrin is used as an ingredient in food but mainly in pharmaceuticals and cosmetics. In the European Union, bovine lactoferrin has been legally approved for use as a food ingredient since 2012. However, as our research shows, it is not widely used in food production. The major producers of lactoferrin and the few available food products containing it are listed in the article. Due to anti-inflammatory, antibacterial, antiviral, immunomodulatory, antioxidant, and anti-tumour activity, the possibility of lactoferrin use in disease prevention (as a supportive treatment in obesity, diabetes, as well as cardiovascular diseases, including iron deficiency and anaemia) is reported. The possibility of targeted use of lactoferrin is also presented. The use of nutrition genomics, based on the identification of single nucleotide polymorphisms in genes, for example, FTO, PLIN1, TRAP2B, BDNF, SOD2, SLC23A1, LPL, and MTHFR, allows for the effective stratification of people and the selection of the most optimal bioactive nutrients, including lactoferrin, whose bioactive potential cannot be considered without taking into account the group to which they will be given.
Collapse
Affiliation(s)
- Anna Jańczuk
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Aneta Brodziak
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- Correspondence: ; Tel.: +48-8-1445-6836
| | - Tomasz Czernecki
- Department of Biotechnology, Microbiology and Human Nutrition, Dietitian Service, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Jolanta Król
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
5
|
Bakhsh A, Lee EY, Bakry AM, Rathnayake D, Son YM, Kim SW, Hwang YH, Joo ST. Synergistic effect of lactoferrin and red yeast rice on the quality characteristics of novel plant-based meat analog patties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Avalos-Gómez C, Ramírez-Rico G, Ruiz-Mazón L, Sicairos NL, Serrano-Luna J, de la Garza M. Lactoferrin: An Effective Weapon in the Battle Against Bacterial Infections. Curr Pharm Des 2022; 28:3243-3260. [PMID: 36284379 DOI: 10.2174/1381612829666221025153216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 01/28/2023]
Abstract
The emergence of multidrug-resistant bacterial strains with respect to commercially available antimicrobial drugs has marked a watershed in treatment therapies to fight pathogens and has stimulated research on alternative remedies. Proteins of the innate immune system of mammals have been highlighted as potentially yielding possible treatment options for infections. Lactoferrin (Lf) is one of these proteins; interestingly, no resistance to it has been found. Lf is a conserved cationic nonheme glycoprotein that is abundant in milk and is also present in low quantities in mucosal secretions. Moreover, Lf is produced and secreted by the secondary granules of neutrophils at infection sites. Lf is a molecule of approximately 80 kDa that displays multiple functions, such as antimicrobial, anti-viral, anti-inflammatory, and anticancer actions. Lf can synergize with antibiotics, increasing its potency against bacteria. Lactoferricins (Lfcins) are peptides resulting from the N-terminal end of Lf by proteolytic cleavage with pepsin. They exhibit several anti-bacterial effects similar to those of the parental glycoprotein. Synthetic analog peptides exhibiting potent antimicrobial properties have been designed. The aim of this review is to update understanding of the structure and effects of Lf and Lfcins as anti-bacterial compounds, focusing on the mechanisms of action in bacteria and the use of Lf in treatment of infections in patients, including those studies where no significant differences were found. Lf could be an excellent option for prevention and treatment of bacterial diseases, mainly in combined therapies with antibiotics or other antimicrobials.
Collapse
Affiliation(s)
- Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico.,Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Km 2.5 Carretera Cuautitlán- Teoloyucan, Cuautitlán Izcalli, 54714, Mexico
| | - Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Nidia León Sicairos
- Departamento de Investigación, Hospital Pediátrico de Sinaloa, Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| |
Collapse
|
7
|
Sawale M, Ozadali F, Valentine CJ, Benyathiar P, Drolia R, Mishra DK. Impact of bovine lactoferrin fortification on pathogenic organisms to attenuate the risk of infection for infants. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Yu HH, Chin YW, Paik HD. Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review. Foods 2021; 10:2418. [PMID: 34681466 PMCID: PMC8535775 DOI: 10.3390/foods10102418] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022] Open
Abstract
Meat and meat products are excellent sources of nutrients for humans; however, they also provide a favorable environment for microbial growth. To prevent the microbiological contamination of livestock foods, synthetic preservatives, including nitrites, nitrates, and sorbates, have been widely used in the food industry due to their low cost and strong antibacterial activity. Use of synthetic chemical preservatives is recently being considered by customers due to concerns related to negative health issues. Therefore, the demand for natural substances as food preservatives has increased with the use of plant-derived and animal-derived products, and microbial metabolites. These natural preservatives inhibit the growth of spoilage microorganisms or food-borne pathogens by increasing the permeability of microbial cell membranes, interruption of protein synthesis, and cell metabolism. Natural preservatives can extend the shelf-life and inhibit the growth of microorganisms. However, they can also influence food sensory properties, including the flavor, taste, color, texture, and acceptability of food. To increase the applicability of natural preservatives, a number of strategies, including combinations of different preservatives or food preservation methods, such as active packaging systems and encapsulation, have been explored. This review summarizes the current applications of natural preservatives for meat and meat products.
Collapse
Affiliation(s)
- Hwan Hee Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Korea;
| | - Young-Wook Chin
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Korea;
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
9
|
Zhou Y, Li Z, Chen Y, Fang H, Wang S. Effects of rosemary and ginger on the storage quality of western‐style smoked sausage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yajun Zhou
- College of Food Science and Engineering Jilin University Changchun China
| | - Zonghao Li
- College of Food Science and Engineering Jilin University Changchun China
| | - Yan Chen
- College of Food Science and Engineering Jilin University Changchun China
| | - Hui Fang
- College of Food Science and Engineering Jilin University Changchun China
| | - Shujie Wang
- College of Biological and Agricultural Engineering Jilin University Changchun China
| |
Collapse
|