1
|
Lu M, Zhang L, Kang S, Ren F, Yang L, Zhang Q, Jia Q. Comprehensive Evaluation of the Nutritional Properties of Different Germplasms of Polygonatum cyrtonema Hua. Foods 2024; 13:815. [PMID: 38540805 PMCID: PMC10968880 DOI: 10.3390/foods13060815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 11/11/2024] Open
Abstract
Polygonatum cyrtonema Hua, an edible resource and medical material, is mainly consumed as a food in China. However, few published studies have comprehensively assessed its nutritional components. In this study, the proximate, carbohydrate, and dietary fiber contents as well as the mineral, vitamin, and amino acid compositions of five sources of P. cyrtomena grown in Yuhang district, Hangzhou city, Zhejiang province, were investigated. The nutritional profile of the five germplasms was investigated using analytical chemistry methods. All germplasms had a low starch content and contained greater amounts of carbohydrates (23.25-34.29%), protein (2.96-5.40%), Ca (195.08-282.08 mg/100 g), Fe (29.68-59.37 mg/100 g), and vitamin C (60.49-149.86 mg/100 g) in comparison to ginger, yam, and potatoes. The polysaccharide content ranged from 16.92% to 28.48%, representing the main source of carbohydrates. Fructose, a desirable sweetener, was the most abundant monosaccharide, representing 1.06% to 4.88% of the content. P. cyrtonema was found to be high in dietary fiber, with pectin and resistant starch being the major soluble components and hemicellulose being the dominant insoluble dietary fiber. A correlation analysis (CA) revealed significant correlations for the carbohydrate components and dietary fiber fractions with other nutrients. A principal component analysis (PCA) identified significant differences between the nutritional characteristics of the five germplasms, with Huanggang having the highest comprehensive quality scores. Moreover, ten nutrient components were selected as potential indicators that could be used to further evaluate the nutritional quality of P. cyrtomena. Our results demonstrate the rich nutrient composition and characteristics of P. cyrtonema and provide a valuable reference for the future development and utilization of Polygonatum.
Collapse
Affiliation(s)
- Mei Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Luping Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shixin Kang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengxiao Ren
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Luyun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qingyou Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiaojun Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.L.); (L.Z.); (S.K.); (F.R.); (L.Y.); (Q.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2
|
Ma T, Yang C, Cai F, Osei R. Molecular Identification and Characterization of Fusarium Associated with Walnut Branch Blight Disease in China. Pathogens 2023; 12:970. [PMID: 37513816 PMCID: PMC10384706 DOI: 10.3390/pathogens12070970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In October 2020, samples of walnut branch blight were collected from Longnan. Pathogens were isolated and identified based on morphological and molecular features, and their characteristics were analyzed by pathogenicity. Pathogenicity testing revealed that seven strains (LN-1, LN-3, LN-6, LN-19, LN-27, QY3-1, and QY9-1) induced symptoms of walnut branch blight that were consistent with those observed in the field after inoculation. Furthermore, some Fusarium-type conidia and spherical chlamydospores were visible indicating that they were Fusarium spp. A molecular characterization including sequence and phylogenetic analysis of the ITS, TEF-1α, βTUB, Fu, and LSU gene regions revealed that LN-1 and LN-19 belonged to F. avenaceum, LN-3 and LN-6 to F. acuminatum, LN-27 to F. sporotrichioides, and QY3-1 and QY9-1 to F. tricinctum. This is the first time that F. acuminatum-, F. sporotrichioides-, and F. tricinctum-caused walnut branch blight has been reported in China.
Collapse
Affiliation(s)
- Ting Ma
- Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Chengde Yang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Fengfeng Cai
- Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Richard Osei
- Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Chen X, Ran J, Mazhar M, Zhu Y, Lin Y, Qin L, Miao S. The balanced unsaturated fatty acid supplement constituted by woody edible oils improved lipid metabolism and gut microbiota in high-fat diet mice. Front Nutr 2023; 10:1203932. [PMID: 37545586 PMCID: PMC10399753 DOI: 10.3389/fnut.2023.1203932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
The dietary intervention has demonstrated effectiveness in improving hyperlipidemia and obesity. Woody edible oils are rich in unsaturated fatty acids (UFAs) that could positively affect lipid metabolism. In this study, the blended oil (BLO), a balanced UFA supplement, constituted by Zanthoxylum bungeanum (Chinese Red Pepper) seed oil, walnut (Juglans regia) oil, camellia (Camema oleifera) seed oil and perilla (Perilla frutescens) seed oil was established referring to the Chinese dietary reference intakes, in which the ratios of monounsaturated/polyunsaturated fatty acids and ω-6/ω-3 polyunsaturated fatty acids were 1:1 and 4:1, respectively. The BLO was administrated to KM mice fed a high-fat diet (HFD) by gavage every day at a dose of 3.0 mL/kg·bw for 10 weeks to assess its effects on serum lipid levels, liver antioxidant activities and gut microbial composition. The results showed that the BLO improved hepatic steatosis, liver oxidative stress, and serum lipid levels. Additionally, there was an increased abundance of Lactobacillus, Allobaculum, and Blautia, along with a decreased abundance of Staphylococcus in cecal contents. These changes were found to be positively correlated with the metabolic improvements, as indicated by Spearman's correlation analysis. These findings implied the practicality of the balanced unsaturated fatty acid consumption in preventing hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- Department of Laboratory Medicine, Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang, China
| | - Jingqi Ran
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Muhammad Mazhar
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yong Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yichen Lin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Likang Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
4
|
Comparison of aroma active compounds in cold- and hot-pressed walnut oil by comprehensive two-dimensional gas chromatography-olfactory-mass spectrometry and headspace-gas chromatography-ion mobility spectrometry. Food Res Int 2023; 163:112208. [PMID: 36596141 DOI: 10.1016/j.foodres.2022.112208] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Aroma composition of cold-pressed walnut oil (CWO) and hot-pressed walnut oil (HWO) was analyzed by comprehensive two-dimensional gas chromatography-olfactory-mass spectrometry (GC × GC-O-MS) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). A total of 83 and 197 compounds were identified in the CWO and HWO, respectively; among these, 76 and 123 compounds were sniffed exclusively by GC × GC-O-MS, respectively. A total of 36 volatile compounds were detected by HS-GC-IMS, of which 10 in CWO and 32 in HWO. Based on of flavor dilution (FD) factors, odor-activity values (OAVs), and recombination and omission experiments, 1-octen-3-ol, cyclohexanol, and benzaldehyde were found to be the key aroma-active compounds in CWO, while 3-methylbutanal, (E,E)-2,4-nonadienal, nonanal, 1-octen-3-ol, 3-pentanol, 1-octanol, and furfural were the key aroma-active compounds in HWO. Moreover, Maillard reaction and lipid oxidation were found to play an important role in flavor formation in HWO. This study provides a guide to improve the quality of walnut oil based on aroma characteristics.
Collapse
|