1
|
Pires Figueiredo M, Rodríguez-Fernández S, Copes F, Mantovani D. Review of collagen type I-based hydrogels: focus on composition-structure-properties relationships. NPJ BIOMEDICAL INNOVATIONS 2025; 2:16. [PMID: 40330695 PMCID: PMC12049273 DOI: 10.1038/s44385-025-00018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/21/2025] [Indexed: 05/08/2025]
Abstract
This review explores each stage of Collagen type I (Coll-I) hydrogel development, highlighting how sourcing, extraction, solubilization, and modification (e.g., blending, crosslinking, and composite formation) influence its gelation, and structural, mechanical, and biological properties. By clarifying key interrelations among these characteristics, this work serves as a valuable guide for scientists designing next-generation of Coll-I-based hydrogels with optimized properties for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Mariana Pires Figueiredo
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC Canada
| | - Silvia Rodríguez-Fernández
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC Canada
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC Canada
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC Canada
| |
Collapse
|
2
|
Rathnayake PY, Yu R, Yeo SE, Choi YS, Hwangbo S, Yong HI. Application of Ultrasound to Animal-Based Food to Improve Microbial Safety and Processing Efficiency. Food Sci Anim Resour 2025; 45:199-222. [PMID: 39840248 PMCID: PMC11743837 DOI: 10.5851/kosfa.2024.e128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Animal-based foods such as meat, dairy, and eggs contain abundant essential proteins, vitamins, and minerals that are crucial for human nutrition. Therefore, there is a worldwide growing demand for animal-based products. Since animal-based foods are vital resources of nutrients, it is essential to ensure their microbial safety which may not be ensured by traditional food preservation methods. Although thermal food preservation methods ensure microbial inactivation, they may degrade the nutritional value, physicochemical properties, and sensory qualities of food. Consequently, non-thermal, ultrasound food preservation methods are used in the food industry to evaluate food products and ensure their safety. Ultrasound is the sound waves beyond the human audible range, with frequencies greater than 20 kHz. Two types of ultrasounds can be used for food processing: low-frequency, high-intensity (20-100 kHz, 10-1,000 W/cm2) and high-frequency, low-intensity (>1 MHz, <1 W/cm2). This review emphasizes the application of ultrasound to improve the microbial safety of animal-based foods. It further discusses the ultrasound generation mechanism, ultrasound technique for microbial inactivation, and application of ultrasound in various processing operations, namely thawing, extraction, and emulsification.
Collapse
Affiliation(s)
| | - Rina Yu
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Korea
| | - So Eun Yeo
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | | | - Hae In Yong
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
3
|
Kang D, Wang W, Li Y, Ma Y, Huang Y, Wang J. Biological Macromolecule Hydrogel Based on Recombinant Type I Collagen/Chitosan Scaffold to Accelerate Full-Thickness Healing of Skin Wounds. Polymers (Basel) 2023; 15:3919. [PMID: 37835967 PMCID: PMC10575414 DOI: 10.3390/polym15193919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
The development of biological macromolecule hydrogel dressings with fatigue resistance, sufficient mechanical strength, and versatility in clinical treatment is critical for accelerating full-thickness healing of skin wounds. Therefore, in this study, multifunctional, biological macromolecule hydrogels based on a recombinant type I collagen/chitosan scaffold incorporated with a metal-polyphenol structure were fabricated to accelerate wound healing. The resulting biological macromolecule hydrogel possesses sufficient mechanical strength, fatigue resistance, and healing properties, including antibacterial, antioxygenic, self-healing, vascularization, hemostatic, and adhesive abilities. Chitosan and recombinant type I collagen formed the scaffold network, which was the first covalent crosslinking network of the hydrogel. The second physical crosslinking network comprised the coordination of a metal-polyphenol structure, i.e., Cu2+ with the catechol group of dopamine methacrylamide (DMA) and stacking of DMA benzene rings. Double-crosslinked networks are interspersed and intertwined in the hydrogel to reduce the mechanical strength and increase its fatigue resistance, making it more suitable for clinical applications. Moreover, the biological macromolecule hydrogel can continuously release Cu2+, which provides strong antibacterial and vascularization properties. An in vivo full-thickness skin defect model confirmed that multifunctional, biological macromolecule hydrogels based on a recombinant type I collagen/chitosan scaffold incorporated with a metal-polyphenol structure can facilitate the formation of granulation tissue and collagen deposition for a short period to promote wound healing. This study highlights that this biological macromolecule hydrogel is a promising acute wound-healing dressing for biomedical applications.
Collapse
Affiliation(s)
- Duo Kang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
| | - Wenhai Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China;
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Production of Collagens and Protein Hydrolysates with Antimicrobial and Antioxidant Activity from Sheep Slaughter By-Products. Antioxidants (Basel) 2022; 11:antiox11061173. [PMID: 35740070 PMCID: PMC9219988 DOI: 10.3390/antiox11061173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022] Open
Abstract
This work aimed to produce collagens and hydrolysates with antimicrobial and antioxidant activity from sheep slaughter by-products. The by-products (sheep and lamb) were treated and extracted. The collagens were hydrolyzed with the enzyme Alcalase®. The spectra of collagens and hydrolysates were similar (amide bands I, II, III, A, B). The bands presented by the collagens (α1, α2, β) were characteristic of type I collagen. The hydrolysates showed molecular weight peptides equal to/lower than 15 kDa. Collagens had a denaturation temperature of 39.32 (lamb) and 36.38 °C (sheep), whereas the hydrolysates did not undergo thermal transition. Hydrolysates showed lower values of antioxidant activity (AA) than the collagens. The collagens from lamb and from sheep displayed an AA of 13.4% (concentration of 0.0002%) and 13.1% (concentration of 0.0005%), respectively. At the concentration of 0.0020%, the lamb hydrolysates displayed an AA of 10.2%, whereas the sheep hydrolysates had an AA of only 1.98%. Collagen also showed higher antimicrobial activity compared to hydrolysates, requiring a lower concentration to inhibit the microorganisms tested. Sheep slaughter by-products proved to be a viable source for obtaining protein hydrolysates and collagens with antimicrobial and antioxidant activity, which can be applied in the development of nutraceuticals beneficial to human health.
Collapse
|
5
|
The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers (Basel) 2022; 14:polym14050876. [PMID: 35267698 PMCID: PMC8912536 DOI: 10.3390/polym14050876] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Collagen, an extracellular protein, covers the entire human body and has several important biological functions in normal physiology. Recently, collagen from non-human sources has attracted attention for therapeutic management and biomedical applications. In this regard, both land-based animals such as cow, pig, chicken, camel, and sheep, and marine-based resources such as fish, octopus, starfish, sea-cucumber, and jellyfish are widely used for collagen extraction. The extracted collagen is transformed into collagen peptides, hydrolysates, films, hydrogels, scaffolds, sponges and 3D matrix for food and biomedical applications. In addition, many strategic ideas are continuously emerging to develop innovative advanced collagen biomaterials. For this purpose, it is important to understand the fundamental perception of how collagen communicates with receptors of biological cells to trigger cell signaling pathways. Therefore, this review discloses the molecular interaction of collagen with cell receptor molecules to carry out cellular signaling in biological pathways. By understanding the actual mechanism, this review opens up several new concepts to carry out next level research in collagen biomaterials.
Collapse
|
6
|
Cao C, Xiao Z, Ge C, Wu Y. Animal by-products collagen and derived peptide, as important components of innovative sustainable food systems-a comprehensive review. Crit Rev Food Sci Nutr 2021; 62:8703-8727. [PMID: 34080446 DOI: 10.1080/10408398.2021.1931807] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2020, the world's food crisis and health industry ushered into a real outbreak. On one side, there were natural disasters such as the novel coronavirus (2019-nCoV), desert locusts, floods, and droughts exacerbating the world food crisis, while on the other side, the social development and changes in lifestyles prompted the health industry to gradually shift from a traditional medical model to a new pattern of prevention, treatment, and nourishment. Therefore, this article reviews animal by-products collagen and derived peptide, as important components of innovative sustainable food systems. The review also considered the preparation, identification, and characterization of animal by-product collagen and collagen peptides as well as their impacts on the food system (including food processing, packaging, preservation, and functional foods). Finally, the application and research progress of animal by-product collagen and peptide in the food system along with the future development trend were discussed. This knowledge would be of great significance for a comprehensive understanding of animal by-product collagen and collagen peptides and would encourage the use of collagen in food processing, preservation, and functional foods.
Collapse
Affiliation(s)
- Changwei Cao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhichao Xiao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changrong Ge
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|