1
|
Güngören A, Akkemik Y, Tufekci EF, Zengin G, Emre G, Gungoren G, Celik Altunoglu Y, Baloğlu MC. Applying Chitosan-Based Films Enriched with Borago officinalis Extract for Active and Green Packaging of Fresh Rainbow Trout Fillets. Foods 2025; 14:639. [PMID: 40002083 PMCID: PMC11854841 DOI: 10.3390/foods14040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/01/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to apply chitosan (CS) coating films enriched with Borago officinalis extract to preserve fresh rainbow trout fillets. Extracts of B. officinalis were prepared using ethyl acetate, ethanol, water, and an ethanol-water mixture. These extracts were incorporated into chitosan coating films at 0.5% and 1% (v/v) concentrations, and their antimicrobial activity and antioxidant abilities were investigated. CS films with borage extract in ethanol-water combination showed the highest antibacterial zone diameter (9.5 ± 2.1 mm) against Staphylococcus aureus. Based on its superior antimicrobial and antioxidant activity, the ethanol-water extract was selected for further film characterization, including moisture content, swelling degree, solubility, and color. The films were then tested for their effectiveness in preserving rainbow trout fillets stored at 7 ± 1 °C. The fish samples were divided into four groups: control, chitosan coating film, chitosan coating film with 0.5% B. officinalis extract, and chitosan coating film with 1% B. officinalis extract. Physicochemical, chemical, and microbiological analyses were conducted until fillet spoilage was observed (12 days). Results demonstrated that chitosan coating films enriched with 1% extract of B. officinalis prolonged the expiration date of the fish by six days, had significant antioxidant properties, and protected fish from discoloration. While the coating films demonstrated promising antioxidant properties and the shelf life extension of the fish samples by six days, further optimization will be required to enhance their antimicrobial effectiveness.
Collapse
Affiliation(s)
- Alper Güngören
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Kastamonu University, 37150 Kastamonu, Türkiye;
| | - Yasin Akkemik
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Kastamonu University, 37150 Kastamonu, Türkiye;
| | - Enis Fuat Tufekci
- Department of Medical Microbiology, Faculty of Medicine, Kastamonu University, 37150 Kastamonu, Türkiye;
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Türkiye;
| | - Gizem Emre
- Department of Pharmaceutical Biology, Pharmacy Faculty, Marmara University, 34722 Istanbul, Türkiye;
| | - Gulsah Gungoren
- Department of Animal Science, Faculty of Veterinary Medicine, Kastamonu University, 37150 Kastamonu, Türkiye;
| | - Yasemin Celik Altunoglu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, 37150 Kastamonu, Türkiye; (Y.C.A.); (M.C.B.)
| | - Mehmet Cengiz Baloğlu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, 37150 Kastamonu, Türkiye; (Y.C.A.); (M.C.B.)
| |
Collapse
|
2
|
Kurek M, Pišonić P, Ščetar M, Janči T, Čanak I, Vidaček Filipec S, Benbettaieb N, Debeaufort F, Galić K. Edible Coatings for Fish Preservation: Literature Data on Storage Temperature, Product Requirements, Antioxidant Activity, and Coating Performance-A Review. Antioxidants (Basel) 2024; 13:1417. [PMID: 39594558 PMCID: PMC11591116 DOI: 10.3390/antiox13111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Fresh fish is among the most nutritive foodstuffs, but it is also the most perishable one. Therefore, huge efforts have been made to find the most suitable tools to deliver fish of the highest quality to exigent consumers. Scientific studies help the industry to exploit the newest findings to scale up emerging industrial technologies. In this review article, the focus is on the latest scientific findings on edible films used for fish coatings and storage. Since today's packaging processing and economy are governed by sustainability, naturality underpins packaging science. The synthesis of edible coatings, their components, processing advantages, and disadvantages are outlined with respect to the preservation requirements for sensitive fish. The requirements of coating properties are underlined for specific scenarios distinguishing cold and freezing conditions. This review raises the importance of antioxidants and their role in fish storage and preservation. A summary of their impact on physical, chemical, microbiological, and sensory alterations upon application in real fish is given. Studies on their influence on product stability, including pro-oxidant activity and the prevention of the autolysis of fish muscle, are given. Examples of lipid oxidation and its inhibition by the antioxidants embedded in edible coatings are given together with the relationship to the development of off-odors and other unwanted impacts. This review selects the most significant and valuable work performed in the past decade in the field of edible coatings whose development is on the global rise and adheres to food waste and sustainable development goals 2 (zero hunger), 3 (good health and well-being), and 12 (responsible consumption and production).
Collapse
Affiliation(s)
- Mia Kurek
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Petra Pišonić
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Mario Ščetar
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Tibor Janči
- Laboratory for Meat and Fish Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.J.); (S.V.F.)
| | - Iva Čanak
- Laboratory for General Microbiology and Food Microbiology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Sanja Vidaček Filipec
- Laboratory for Meat and Fish Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.J.); (S.V.F.)
| | - Nasreddine Benbettaieb
- Joint Unit PAM-PCAV (Physico-Chemistry of Food and Wine Laboratory), Université Bourgogne-Franche-Comté, Institut AgroDijon, INRAé, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France; (N.B.); (F.D.)
- Department of BioEngineering, Institute of Technology, University of Burgundy, 7 Blvd Docteur Petitjean, 210780 Dijon, France
| | - Frédéric Debeaufort
- Joint Unit PAM-PCAV (Physico-Chemistry of Food and Wine Laboratory), Université Bourgogne-Franche-Comté, Institut AgroDijon, INRAé, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France; (N.B.); (F.D.)
- Department of BioEngineering, Institute of Technology, University of Burgundy, 7 Blvd Docteur Petitjean, 210780 Dijon, France
| | - Kata Galić
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| |
Collapse
|
3
|
Yan T, Hu C, Que Y, Song Y, Lu D, Gu J, Ren Y, He J. Chitosan coating enriched with biosynthetic CuO NPs: Effects on postharvest decay and quality of mango fruit. Int J Biol Macromol 2023; 253:126668. [PMID: 37660851 DOI: 10.1016/j.ijbiomac.2023.126668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
A chitosan-based nanocomposite film (CSC) was developed by mixing chitosan (CS, 2 %, v/v) and copper oxide nanoparticles (CuO NPs, 500 μg∙mL-1) synthesized using Alpinia officinarum extract for the safe storage of mango fruit. The effects of CuO NPs on the morphological, mechanical, thermal, physical and antifungal properties of the CS films and postharvest quality of mango fruit were determined. Scanning electron microscopy (SEM) analysis confirmed that CuO NPs were uniformly dispersed into the CS matrix. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) profiles showed that intermolecular H-bondings occurred between CS and CuO NPs, accompanied by decreased crystallinity and increased amorphous structure. In comparison to the pure CS film, addition of CuO NPs obviously improved the morphological, mechanical, thermal, physical and antifungal properties of CSC film. CSC coating treatment obviously delayed the fruit decay and yellowing, as well as reduced losses of weight and firmness of mango (Mangifera indica L.) fruit during the storage, when compared with the control and CS coating treatment. Meanwhile, it significantly decreased the respiration rate and ethylene generation and maintained high level of ascorbic acid (AsA), titratable acid (TA) and soluble sugar content (SSC) of the fruit during the storage. Notably, Cu presented in the CSC film was restrained to the peel, indicating that the CSC coated mango fruit had good edible safety. Principal component analysis (PCA) confirmed that CSC coating played a positive role in mango preservation. Therefore, CSC coating can be considered a potential application for successfully controlling of postharvest disease and prolonging the shelf life for mango fruit.
Collapse
Affiliation(s)
- Tengyu Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Chunmei Hu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yuqing Que
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yaping Song
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Dandan Lu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Jinyu Gu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yanfang Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China.
| | - Junyu He
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China.
| |
Collapse
|
4
|
Rathod NB, Bangar SP, Šimat V, Ozogul F. Chitosan and gelatine biopolymer‐based active/biodegradable packaging for the preservation of fish and fishery products. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post Graduate Institute of Post‐Harvest Management Roha, Raigad, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth Maharashtra State India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University 29634 Clemson USA
| | - Vida Šimat
- University of Split Department of Marine Studies, R. Boškovića 37, HR‐21000 Split Croatia
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries Cukurova University 01330 Adana Turkey
| |
Collapse
|
5
|
Impacts of Nano-Gelatin Coating Containing Thymol and Nisin on Chemical Quality Indices of Rainbow Trout Fillets Stored at 4°C. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-122177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Seafood such as fish is an integral part of human nutrition and an excellent source of protein. However, their short shelf life is quite challenging for the food industry. Objectives: This study was carried out to investigate the effects of nano-gelatin coating embedded with thymol and nisin on the chemical quality indices of rainbow trout fillets during 16 days of storage at 4°C. Methods: The fillets were randomly divided into six groups, including control (C), gelatin (G), nano-gelatin (NG), nano-gelatin + thymol (NG-T), nano-gelatin + nisin (NG-N), and nano-gelatin + nisin and thymol (NG-T-N). The chemical quality of fish samples was assessed by performing pH, thiobarbituric acid reactive substance (TBARS), peroxide value (PV), free fatty acid (FFA), and total volatile basic nitrogen (TVB-N) analyses every four days. Results: The results revealed the stunning effect of nisin and thymol addition to the nano-gelatin coating on all chemical quality indices. Besides, PV, TBARS, and FFA analyses showed that nano-gelatin containing thymol significantly decreased lipid oxidation in fish fillet samples (P < 0.05). The lowest amounts of PV (8.33 meq oxygen/kg oil), TBARS, and FFA were recorded for NG-T-N. The best results in the TBARS test (P < 0.05) were observed in NG-T-N, followed by NG-T (1.45 and 1.69 mg of malonaldehyde/kg of tissue, respectively), and similar results were recorded for FFA analysis. On day 16, the lowest amounts of TVB-N were measured for NG-T-N, followed by NG-N and NG-T (26.13, 29.86, and 38.26 mg N/100 g, respectively). Both nisin and thymol reduced the TVB-N and increased the shelf life, and the best results were observed in groups treated with nisin and thymol simultaneously. However, the application of gelatin and nano-gelatin coating without nisin and thymol was ineffective in improving the chemical quality of samples, and they must be used with nisin and/or thymol. Conclusions: Gelatin nanogel embedded with thymol and nisin can be utilized to enhance the chemical quality and shelf life of fish fillets.
Collapse
|
6
|
Chakraborty P, Nath D, Hoque M, Sarkar P, Hati S, Mishra BK. Biopolymer‐based antimicrobial coatings for aquatic food products: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Priyanka Chakraborty
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| | - Debarshi Nath
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Monjurul Hoque
- Teagasc Ashtown Food Research Centre Teagasc Ashtown Dublin 15 Ireland
- School of Food and Nutritional Sciences University College Cork T12 R229 Cork Ireland
| | - Preetam Sarkar
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Subrota Hati
- Department of Dairy Microbiology SMC College of Dairy Science Anand Agricultural University India
| | - Birendra Kumar Mishra
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| |
Collapse
|