1
|
Rimmer LA, Zumbaugh MD. Skeletal muscle metabolic characteristics and fresh meat quality defects associated with wooden breast. Front Physiol 2024; 15:1501362. [PMID: 39539953 PMCID: PMC11557563 DOI: 10.3389/fphys.2024.1501362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Wooden breast (WB) is a myopathy that occurs in pectoralis major (PM) muscles, predominately affecting large, fast-growing broilers. Severe myodegeneration, increased hypoxia, reduced blood flow, and increased collagen deposition are hallmark characteristics of WB that culminate in unsatisfactory fresh meat quality attributes, such as poor water-holding capacity, tenderness, and processing characteristics. Therefore, WB meat is often downgraded resulting in economic losses for the United States poultry industry. Although WB has been well characterized, its etiology remains undefined. As the scientific community continues to resolve mechanisms responsible for WB onset, understanding biochemical changes associated with WB may facilitate solutions to negate its poor meat quality attributes. Given changes in metabolism of living muscle can alter biochemical processes during the conversion of muscle to meat, this review aims to summarize and discuss the current knowledge of WB muscle and meat biochemistry. For example, it appears metabolic pathways that support combating stress are upregulated in WB muscle at the expense of glycolytic flux, which presumably contributes to the high ultimate pH of WB meat. Further, perturbed function of WB mitochondria, such as altered calcium handling, impacts aspects of postmortem metabolism and proteolysis. Collectively, metabolic dysfunction of WB muscle alters the biochemical processes that occur during the conversion of muscle to meat, and thus contributes to the poor WB meat quality.
Collapse
Affiliation(s)
| | - Morgan D. Zumbaugh
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
2
|
Kaewkot C, Wu MD, Tan FJ. Relationships of quality indices with wooden breast myopathy severity in chicken breast meat under refrigerated storage. Br Poult Sci 2024; 65:287-296. [PMID: 38466394 DOI: 10.1080/00071668.2024.2316865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/24/2024] [Indexed: 03/13/2024]
Abstract
1. This study investigated the relationships of quality indices with the severity of wooden breast (WB) myopathy in chicken breast meat under refrigerated storage. The physicochemical properties, water-holding capacity (WHC), microbial quality and fatty acid profiles of normal chicken breast meat samples (NOR samples, n = 63), moderate WB (MWB, n = 63) myopathy and severe WB (SWB, n = 63) myopathy (MWB and SWB samples, respectively) were evaluated immediately after sampling and after 4 and 8 d of refrigerated storage at 4°C.2. Total collagen, fat, saturated and monounsaturated fatty acid contents, redness and pH of the SWB and MWB samples were higher than the NOR samples. The SWB samples that were stored for 8 d had poor WHC, total viable counts (TVC) of higher than 7.0log colony-forming units, total volatile basic nitrogen (TVB-N) content of greater than 15 mg/100 g and a thiobarbituric acid - reactive substance level of higher than 1 mg/kg malondialdehyde.3. No significant difference was observed in the TVB-N content and TVC of the MWB and NOR samples during storage. Polyunsaturated fatty acid content was lower in the SWB and MWB samples than in the NOR samples. The SWB samples were tougher than the MWB and NOR samples after 8 d of refrigeration.4. In conclusion, the quality of chicken breast meat with SWB myopathy degraded considerably over time; thus, such meat should not be subjected to extended refrigeration for storage.
Collapse
Affiliation(s)
| | | | - F-J Tan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Choi J, Shakeri M, Kim WK, Kong B, Bowker B, Zhuang H. Water properties in intact wooden breast fillets during refrigerated storage. Poult Sci 2024; 103:103464. [PMID: 38271756 PMCID: PMC10832472 DOI: 10.1016/j.psj.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
The wooden breast (WB) condition notably alters moisture content and water holding capacity (WHC) in broiler breast fillets. The purpose of this study was to investigate water properties during refrigerated storage from 4 h to 168 h postmortem using time domain nuclear magnetic resonance (TD-NMR). Water properties measured included mobility (T), proportion (P), and abundance per 100 g of meat (A). Changes in meat quality indicators including compression force, color, pH, cumulative purge loss, and proximate composition were also measured. Compression force and energy of the WB fillets were higher than normal fillets (P < 0.05). Slopes of changes in lightness of the WB and normal fillets were different in skin and bone side (P < 0.05). The slope of the purge loss from the WB fillets was higher than the normal fillets (P < 0.05). Time domain nuclear magnetic resonance analysis showed 4 water populations in intact broiler fillets with transverse relaxation time (T2) constants at approximately 4 to 5 milliseconds (ms) (designated as 2b, corresponding to hydration water or bound water), 40 to 60 ms (designated as 21, corresponding to intra-myofibrillar water or immobilized water), 80 to 210 ms (designated as 22a, corresponding to extra-myofibrillar water or free water with lower mobility) and 210 to 500 ms (designated as 22b, corresponding to extra-myofibrillar water or free water with higher mobility) during early postmortem storage (between 4 h and 72 h postmortem) and only 3 populations (2b, 21, and 22a) after 72 h postmortem. There were interaction effects (P < 0.05) between storage time and WB condition for all water properties except T2b, A2b/100 g, and T22b. The linear change of T21, P21, A21/100 g, T22a, A22a/100 g, P22b, and A22b/100 g in stored WB samples were different from the normal fillets (P < 0.05). During storage, P21 and A21/100 g of the WB fillets exhibited faster linear increases than those of the normal fillets, whereas T21 and T22a of the normal fillets and A22a/100 g, P22b, and A22b/100 g of the WB fillets showed faster linear decreases (P < 0.05). Our data demonstrate that the WB condition affects changes in water properties in broiler fillets during postmortem refrigerated storage.
Collapse
Affiliation(s)
- Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA; Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Majid Shakeri
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA.
| |
Collapse
|
4
|
Li B, Lindén J, Puolanne E, Ertbjerg P. Effects of Wooden Breast Syndrome in Broiler Chicken on Sarcoplasmic, Myofibrillar, and Connective Tissue Proteins and Their Association with Muscle Fiber Area. Foods 2023; 12:3360. [PMID: 37761069 PMCID: PMC10528182 DOI: 10.3390/foods12183360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
This study was conducted on chicken pectoralis major muscle with different wooden breast severity in combination with different sampling locations to investigate the effects of wooden breast syndrome on protein traits and total myofiber area, and their associations. Contents of sarcoplasmic, salt-soluble myofibrillar and salt-insoluble protein and proportion of total myofiber area significantly declined with increasing severity in the superficial part of muscle, whereas the amount of heat-soluble/insoluble collagen and protein denaturation as well as the area of degenerated myofibers, connective tissue and cellular infiltrates increased. Myofibril protein content indicators showed strong positive correlations to total myofiber area. Moreover, PCA results indicated that severe wooden breast is positively linked to muscle collagen content and to protein denaturation. Our results suggest that decrease in sarcoplasmic and myofibrillar proteins is associated with reduction of myofiber area. In turn, the muscle fibers are replaced by connective tissue, accompanied by excessive myofibrillar and sarcoplasmic protein denaturation.
Collapse
Affiliation(s)
- Binbin Li
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland; (B.L.); (E.P.)
| | - Jere Lindén
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland;
- Finnish Centre for Laboratory Animal Pathology (FCLAP), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Eero Puolanne
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland; (B.L.); (E.P.)
| | - Per Ertbjerg
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland; (B.L.); (E.P.)
| |
Collapse
|
5
|
Hayat MN, Kumar P, Sazili AQ. Are spiritual, ethical, and eating qualities of poultry meat influenced by current and frequency during electrical water bath stunning? Poult Sci 2023; 102:102838. [PMID: 37392488 PMCID: PMC10336690 DOI: 10.1016/j.psj.2023.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023] Open
Abstract
With the continuous rise of Muslim and Jewish populations and their increasing preference for ritually slaughtered poultry meat, the industry is forced to redefine its existing product-centric quality standard toward a new consumer-centric dimension of quality. The new dimension is mainly attributed to ensuring animal welfare and ethical treatment (ethical quality), spiritual quality (such as halal status, cleanliness), and eating quality standards set by religion. To meet consumer quality requirements while maintaining high production performance, the industry has incorporated newer technologies that are compatible with religious regulations such as stunning methods like electrical water bath stunning. However, the introduction of new techniques such as electrical water bath stunning has been met with mixed reactions. Some religious scholars have banned the use of any stunning methods in religious slaughter, as halal status is believed to be compromised in cases where birds have been stunned to death before slaughter. Nevertheless, some studies have shown the positive side of the electrical water bath stunning procedure in terms of preserving eating, ethical, and spiritual quality. Therefore, the present study aims to critically analyze the application of various aspects of electrical water bath stunning such as current intensity and frequency on various quality attributes, namely, ethical, spiritual, and eating quality of poultry meat.
Collapse
Affiliation(s)
- Muhammad Nizam Hayat
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pavan Kumar
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Alnahhas N, Pouliot E, Saucier L. The hypoxia-inducible factor 1 pathway plays a critical role in the development of breast muscle myopathies in broiler chickens: a comprehensive review. Front Physiol 2023; 14:1260987. [PMID: 37719466 PMCID: PMC10500075 DOI: 10.3389/fphys.2023.1260987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
In light of the increased worldwide demand for poultry meat, genetic selection efforts have intensified to produce broiler strains that grow at a higher rate, have greater breast meat yield (BMY), and convert feed to meat more efficiently. The increased selection pressure for these traits, BMY in particular, has produced multiple breast meat quality defects collectively known as breast muscle myopathies (BMM). Hypoxia has been proposed as one of the major mechanisms triggering the onset and occurrence of these myopathies. In this review, the relevant literature on the causes and consequences of hypoxia in broiler breast muscles is reviewed and discussed, with a special focus on the hypoxia-inducible factor 1 (HIF-1) pathway. Muscle fiber hypertrophy induced by selective breeding for greater BMY reduces the space available in the perimysium and endomysium for blood vessels and capillaries. The hypoxic state that results from the lack of circulation in muscle tissue activates the HIF-1 pathway. This pathway alters energy metabolism by promoting anaerobic glycolysis, suppressing the tricarboxylic acid cycle and damaging mitochondrial function. These changes lead to oxidative stress that further exacerbate the progression of BMM. In addition, activating the HIF-1 pathway promotes fatty acid synthesis, lipogenesis, and lipid accumulation in myopathic muscle tissue, and interacts with profibrotic growth factors leading to increased deposition of matrix proteins in muscle tissue. By promoting lipidosis and fibrosis, the HIF-1 pathway contributes to the development of the distinctive phenotypes of BMM, including white striations in white striping-affected muscles and the increased hardness of wooden breast-affected muscles.
Collapse
Affiliation(s)
- Nabeel Alnahhas
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC, Canada
| | | | - Linda Saucier
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, QC, Canada
- Swine and Poultry Infectious Diseases Research Center, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
7
|
Carvalho LM, Rocha TC, Delgado J, Díaz-Velasco S, Madruga MS, Estévez M. Deciphering the underlying mechanisms of the oxidative perturbations and impaired meat quality in Wooden breast myopathy by label-free quantitative MS-based proteomics. Food Chem 2023; 423:136314. [PMID: 37167669 DOI: 10.1016/j.foodchem.2023.136314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The study aimed to investigate biochemical mechanisms occurred in Wooden breast (WB) chicken meat, with attention to the impact on meat quality. Commercial chicken breasts were classified as Normal (N, n = 12), WB-M (moderate degree; focal hardness on cranial region, n = 12) and WB-S (severe degree; extreme and diffused hardness over the entire surface, n = 12). Samples were analyzed for physico-chemical properties, oxidative damage to lipids and proteins, and discriminating sarcoplasmic proteins by using a Q-Exactive mass spectrometer. WB meat presented impaired composition and functionality and higher levels of lipid and protein oxidation markers than N meat. The proteomic profile of WB-S presents a dynamic regulation of the relevant proteins involved in redox homeostasis, carbohydrate, protein and lipid metabolisms. Proteomics results demonstrate that the physiological and metabolic processes of muscles affected by WB myopathy are involved in combating the inflammatory process and in repairing the damaged tissue by oxidative stress.
Collapse
Affiliation(s)
- Leila M Carvalho
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Thayse C Rocha
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Silvia Díaz-Velasco
- Tecnología de los Alimentos, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Marta S Madruga
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Mario Estévez
- Tecnología de los Alimentos, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain.
| |
Collapse
|
8
|
ZAGO ICC, MENDONÇA FJ, BELLUCO CZ, MENCK ALG, SOARES AL. Preparation of a cooked and salted chicken breast product using alcalase-hydrolyzed wooden breast fillets. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.97422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Metabolomic Analysis of Wooden Breast Myopathy Shows a Disturbed Lipid Metabolism. Metabolites 2022; 13:metabo13010020. [PMID: 36676945 PMCID: PMC9862534 DOI: 10.3390/metabo13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Myopathies have risen strongly in recent years, likely linked to selection for appetite. For white striping (WS), causes have been identified; but for wooden breast (WB), the cause remains speculative. We used metabolomics to study the breast muscle of 51 birds that were scored for both at 35 days of age to better understand potential causes. A partial least square discriminant analysis revealed that WS and WB had distinct metabolic profiles, implying different etiologies. Arginine and proline metabolism were affected in both, although differently: WB increased arginine in breast muscle implying that the birds did not use this pathway to increase tissue blood flow. Antioxidant defenses were impeded as shown by low anserine and beta-alanine. In contrast, GSH and selenium concentrations were increased. Serine, linked to anti-inflammatory properties, was increased. Taurine, which can stabilize the cell's sarcolemma as well as modulate potassium channels and cellular calcium homeostasis, was also increased. Mineral data and depressed phosphatidylethanolamine, cAMP, and creatine-phosphate suggested compromised energy metabolism. WB also had drastically lower diet-derived lipids, suggesting compromised lipid digestion. In conclusion, WB may be caused by impaired lipid digestion triggered by a very high appetite: the ensuing deficiencies may well impair blood flow into muscle resulting in irreparable damage.
Collapse
|
10
|
Liu R, Kong F, Xing S, He Z, Bai L, Sun J, Tan X, Zhao D, Zhao G, Wen J. Dominant changes in the breast muscle lipid profiles of broiler chickens with wooden breast syndrome revealed by lipidomics analyses. J Anim Sci Biotechnol 2022; 13:93. [PMID: 35927736 PMCID: PMC9354336 DOI: 10.1186/s40104-022-00743-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chicken is the most consumed meat worldwide and the industry has been facing challenging myopathies. Wooden breast (WB), which is often accompanied by white striping (WS), is a serious myopathy adversely affecting meat quality of breast muscles. The underlying lipid metabolic mechanism of WB affected broilers is not fully understood. RESULTS A total of 150 chickens of a white-feathered, fast-growing pure line were raised and used for the selection of WB, WB + WS and control chickens. The lipids of the breast muscle, liver, and serum from different chickens were extracted and measured using ultra performance liquid chromatography (UPLC) plus Q-Exactive Orbitrap tandem mass spectrometry. In the breast, 560 lipid molecules were identified. Compared to controls, 225/225 of 560 lipid molecules (40.2%) were identified with differential abundance (DA), including 92/100 significantly increased neutral lipids and 107/98 decreased phospholipids in the WB/WB + WS groups, respectively. The content of monounsaturated fatty acids (MUFA) was significantly higher, and the polyunsaturated fatty acids (PUFA) and saturated fatty acids (SFA) were significantly lower in the affected breasts. In the liver, 434 lipid molecules were identified, and 39/61 DA lipid molecules (6.7%/14.1%) were detected in the WB and WB + WS groups, respectively. In the serum, a total of 529 lipid molecules were identified and 4/44 DA lipid molecules (0.8%/8.3%) were detected in WB and WB + WS group, respectively. Compared to controls, the content of MUFAs in the serum and breast of the WB + WS group were both significantly increased, and the content of SFAs in two tissues were both significantly decreased. Only five lipid molecules were consistently increased in both liver and serum in WB + WS group. CONCLUSIONS We have found for the first time that the dominant lipid profile alterations occurred in the affected breast muscle. The relative abundance of 40.2% of lipid molecules were changed and is characteristic of increased neutral lipids and decreased phospholipids in the affected breasts. Minor changes of lipid profiles in the liver and serum of the affected groups were founded. Comprehensive analysis of body lipid metabolism indicated that the abnormal lipid profile of WB breast may be independent of the liver metabolism.
Collapse
Affiliation(s)
- Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Fuli Kong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Siyuan Xing
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Zhengxiao He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Lu Bai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Jiahong Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Xiaodong Tan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Di Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China.
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry), Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
11
|
da Rocha TC, Olegario LS, de Carvalho LM, Pereira DA, González‐Mohino A, Ventanas S, Estévez M, Madruga MS. Consumer behaviour towards chicken breasts affected with myopathy (Wooden Breast): face‐to‐face vs. online tests. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Thayse C. da Rocha
- Post‐Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre Federal University of Paraiba 58051‐900 Joao Pessoa Paraiba Brazil
| | - Lary S. Olegario
- Post‐Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre Federal University of Paraiba 58051‐900 Joao Pessoa Paraiba Brazil
| | - Leila M. de Carvalho
- Post‐Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre Federal University of Paraiba 58051‐900 Joao Pessoa Paraiba Brazil
| | - Deyse A. Pereira
- Post‐Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre Federal University of Paraiba 58051‐900 Joao Pessoa Paraiba Brazil
| | - Alberto González‐Mohino
- IPROCAR Research Institute, TECAL Research Group University of Extremadura 10003 Caceres Spain
| | - Sonia Ventanas
- IPROCAR Research Institute, TECAL Research Group University of Extremadura 10003 Caceres Spain
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group University of Extremadura 10003 Caceres Spain
| | - Marta Suely Madruga
- Post‐Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre Federal University of Paraiba 58051‐900 Joao Pessoa Paraiba Brazil
| |
Collapse
|
12
|
Che S, Wang C, Varga C, Barbut S, Susta L. Prevalence of breast muscle myopathies (spaghetti meat, woody breast, white striping) and associated risk factors in broiler chickens from Ontario Canada. PLoS One 2022; 17:e0267019. [PMID: 35427383 PMCID: PMC9012353 DOI: 10.1371/journal.pone.0267019] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
Spaghetti meat (SM), woody breast (WB), and white striping (WS) are myopathies that affect the pectoral muscle of fast-growing broiler chickens. The prevalence and possible risk factors of these myopathies have been reported in other countries, but not yet in Canada. Thus, the objective of this study was to assess the prevalence and risk factors associated with these myopathies in a representative population of Canadian broilers. From May 2019 to March 2020, 250 random breast fillets from each of 37 flocks (total, 9,250) were obtained from two processing plants and assessed for the presence and severity of myopathies. Demographic data (e.g., sex and average live weight), environmental conditions during the grow-out period (e.g., temperature), and husbandry parameters (e.g., vaccination) were collected for each flock. Associations between these factors and the myopathies were tested using logistic regression analyses. The prevalence of SM, severe WB, and mild or moderate WS was 36.3% (95% CI: 35.3-37.3), 11.8% (95% CI: 11.2-12.5), and 96.0% (95% CI: 95.6-96.4), respectively. Most (85.1%) of the fillets showed multiple myopathies. Regression analyses showed that the odds of SM increased with live weight (OR = 1.30, 95% CI 1.01-1.69) and higher environmental temperature during the grow-out period (OR = 1.75, 95% CI 1.31-2.34). The odds of WB increased with live weight (OR = 1.23, 95% CI 1.03-1.47) and when flocks were not vaccinated against coccidia (OR = 1.86, 95% CI 1.51-2.29). This study documents for the first time a high prevalence of myopathies in Ontario broilers, and suggests that these lesions may have a significant economic impact on the Canadian poultry industry. Our results indicate that environmental conditions and husbandry are associated with the development of breast myopathies, in agreement with the current literature. Future studies are needed to determine how risk factors can promote the occurrence of these conditions, in order to implement possible mitigating strategies.
Collapse
Affiliation(s)
- Sunoh Che
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Chaoyue Wang
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Csaba Varga
- Department of Pathobiology, University of Illinois at Urbana Champaign, Champaign, IL, United States of America
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|