1
|
Wen A, Chi K, Li C, Yuan S, Yu H, Guo Y, Yao W. Efficient and safe removal of free and casein-bound oxytetracycline from milk via pulsed electric field. Food Chem 2025; 483:144235. [PMID: 40239579 DOI: 10.1016/j.foodchem.2025.144235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/22/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
Oxytetracycline (OTC) residues in milk spontaneously bind to casein, forming casein-OTC complexes that complicate their removal. This study assessed the degradation effect of pulsed electric field (PEF) treatment on OTC, with a particular focus on its protein-bound form. Casein-bound OTC was successfully prepared, and the effectiveness of PEF in removing casein-bound antibiotics was confirmed using DESI-MSI technology. Under optimal treatment conditions, the degradation rates of OTC in casein-free whey (86.30 % - 93.43 %) and milk (82.47 % - 90.31 %) showed no significant difference, further confirming that the removal efficacy of PEF on OTC was unaffected by casein binding. The degradation of OTC in both matrices followed the Hülsheger model. Four major degradation products were identified, involving three distinct pathways: epimerization, demethylation, and deamidation. Furthermore, cytotoxicity assays demonstrated that PEF treatment significantly reduced the overall toxicity of OTC in milk. This study provides an effective and safe strategy for removing OTC residues from milk.
Collapse
Affiliation(s)
- Aying Wen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Kexin Chi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Changjian Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Public Health, Shandong Second Medical University, Weifang, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| |
Collapse
|
2
|
Zuo Z, Geng Z, Zhang X, Ma T, Liu H, Wang L. Ultrasonic treatment influences the compactness of quinoa protein microstructure and improves the structural integrity of quinoa protein at the interfaces of high internal phase emulsion. Food Res Int 2023; 168:112713. [PMID: 37120191 DOI: 10.1016/j.foodres.2023.112713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
For native quinoa protein with a loose disordered structure and low structural integrity, once the protein is absorbed to the oil-water interface, the stress of interfacial tension and hydrophobic interaction can easily trigger the conformation change and denaturation of quinoa protein, leading to the instability of high internal phase emulsion (HIPE). Ultrasonic treatment can induce the refolding and self-assembling of quinoa protein microstructure, which is expected to frustrate the disruption of protein microstructure. The particle size, tertiary structure, and secondary structure of quinoa protein isolate particle (QPI) were investigated by multi-spectroscopic technology. The study demonstrates that QPIs prepared with ultrasonic treatment of 5 kJ/mL exhibit more robust structural integrity compared with native QPIs. The relatively loose structure (random coil, 28.15 ± 1.06 %∼25.10 ± 0.28 %) transformed to a more ordered and compact form (α-helix, 5.65 ± 0.07 %∼6.80 ± 0.28 %). Through the addition of QPI-based HIPE as an alternative for commercial shortening, the specific volume of white bread was increased (2.74 ± 0.35 ∼ 3.58 ± 0.04 cm3/g).
Collapse
Affiliation(s)
- Zhongyu Zuo
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Zhanhui Geng
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Xinxia Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Tianjiao Ma
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - He Liu
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Li Wang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| |
Collapse
|
3
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
4
|
Bernardo YAA, do Rosario DKA, Mutz YS, Castro VS, Conte‐Junior CA. Optimizing
Escherichia coli
O157
:
H7
inactivation in goat's milk by thermosonication. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yago A. A. Bernardo
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine Fluminense Federal University (UFF), Vital Brazil Filho Niterói Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
| | - Denes K. A. do Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Department of Food Engineering, Center for Agrarian Sciences and Engineering Federal University of Espírito Santo (UFES), Alto Universitário, S/N, Guararema Alegre Brazil
| | - Yhan S. Mutz
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
| | - Vinícius S. Castro
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
| | - Carlos A. Conte‐Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine Fluminense Federal University (UFF), Vital Brazil Filho Niterói Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ) Federal University of Rio de Janeiro (UFRJ), Cidade Universitária Rio de Janeiro Brazil
| |
Collapse
|