1
|
Celaya LS, Pucciarelli AB, Cruz NE, Brumovsky LA, Viturro CI. Physicochemical and Microbiological Quality Assessment of Artisanal and Commercial Recipes of Cucurbita ficifolia Jams with High Sensory Acceptability. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:51. [PMID: 39873871 DOI: 10.1007/s11130-024-01279-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/30/2025]
Abstract
Artisanal cayote jam consumption is widespread in Latin-American countries. This jam is prepared from the pulp of Cucurbita ficifolia Bouché. Here, an artisanal cayote jam recipe and a reduced-calorie artisanal cayote jam recipe were defined through sensory analysis. The defined jams showed higher overall acceptance and flavour quality compared to commercial ones. The low-calorie jam showed overall acceptance similar to the artisanal product, with no differences in the flavour quality. The cayote jams were characterised by determining physicochemical parameters and microbial flora. Artisanal jams presented physicochemical properties similar to commercial products. The variability of °Brix was greater (40-67); pH were 4.7-5.4, aw were 0.832-0.940. Reduced-calorie jam had pH ≥ 5, °Brix of 30-46 and aw>0.920. The colour of the jams showed significant variability depending on the recipe: L* (26.1-48.1), a*(1.6-4.6), b*(2.1-14.9). Cayote jams were found to be rich in carbohydrates (31-70%) and energy value (134-290 kcal/100 g), with lower contents of fibre, sodium, fat, and protein. The microbiological analysis indicate that there are no risks related to the consumption of cayote jams, although there are indications of potential quality deterioration during subsequent storage due to the development of yeasts and when no preservatives are used in the jam recipes. The characteristic microflora of cayote jams was composed by Penicillium sp., Aspergillus sp., Cephalosporium acremonium, Candida sp. and Rhodotorula sp. These results will benefit artisanal cayote jam producers in Latin-American countries and other regions where C. ficifolia is cultivated, by highlighting the autochthonous value of cayote and contributing to a nutritionally diverse diet.
Collapse
Affiliation(s)
- Liliana S Celaya
- Central Laboratory, Department of Chemical Engineering, National Scientific and Technical Research Council (CONICET UNaM), Félix de Azara 1552, Posadas, 3300, Argentina.
- School of Exact, Chemical and Life Sciences, Misiones National University, Félix de Azara 1552, Posadas, 3300, Argentina.
- PRONOA Laboratory, CIITeD- CONICET Jujuy National University, Italo Palanca 10, San, Salvador de Jujuy, 4600, Argentina.
| | - Amada B Pucciarelli
- School of Exact, Chemical and Life Sciences, Misiones National University, Félix de Azara 1552, Posadas, 3300, Argentina
| | - Nancy E Cruz
- School of Exact, Chemical and Life Sciences, Misiones National University, Félix de Azara 1552, Posadas, 3300, Argentina
| | - Luis A Brumovsky
- School of Exact, Chemical and Life Sciences, Misiones National University, Félix de Azara 1552, Posadas, 3300, Argentina
| | - Carmen I Viturro
- PRONOA Laboratory, CIITeD- CONICET Jujuy National University, Italo Palanca 10, San, Salvador de Jujuy, 4600, Argentina
| |
Collapse
|
2
|
Alam M, Malakar S, Pant K, Dar BN, Nanda V. Comparative studies on the rheological characteristics, functional attributes, and baking stability of xanthan and guar gum formulated honey gel matrix. FOOD SCI TECHNOL INT 2023:10820132231219715. [PMID: 38099822 DOI: 10.1177/10820132231219715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The research aims to enhance the characteristics of honey by incorporating xanthan gum (XG) and guar gum (GG) at various concentrations (0.5-2.0% w/w) and preparing a honey gel matrix (HGM) through high-shear homogenization. This approach serves as a substitute for fat-based filling materials commonly used in bakery products. The study encompassed an investigation of the rheological characteristics (steady and dynamic), total phenolic content (TPC), antioxidant activity, and baking stability of the HGMs. The concentration of the gums used significantly influenced the transformation of honey into the HGM and its stability. Notably, the XG-HGM demonstrated greater shear thinning behavior and higher consistency compared to the GG-HGM. Herschel Bulkley and power law models were found to be the best-fitted models for XG-HGM and GG-HGM, respectively. Furthermore, both XG-HGM and GG-HGM exhibited a higher viscous component (G″) than an elastic component (G') at low concentrations, up to 1% (w/w) for XG-HGM and 1.5% (w/w) for GG-HGM; however, this behavior reversed beyond those concentrations (G' > G″). The XG-HGM exhibited lower temperature sensitivity compared to GG-HGM, indicating better stability under varying heat conditions. Moreover, both TPC and antioxidant activity decreased with increasing concentrations of both gums. The XG-HGM achieved the highest baking stability index, reaching 95.23% at a 2% concentration. This modified HGM formulated with XG demonstrated superior consistency, color retention, and exceptional baking stability, making it a promising candidate for application as a filling material in the bakery sector. Its improved stability and quality can facilitate the development of a wide range of baking products in the food industry.
Collapse
Affiliation(s)
- Masud Alam
- Department of Food Engineering and Technology, Sant Longwal Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Santanu Malakar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - Kirty Pant
- Department of Food Engineering and Technology, Sant Longwal Institute of Engineering and Technology, Sangrur, Punjab, India
| | - B N Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Vikas Nanda
- Department of Food Engineering and Technology, Sant Longwal Institute of Engineering and Technology, Sangrur, Punjab, India
| |
Collapse
|