1
|
Hwang ES, Noh Y, Jeong HY, Lee JJ, Ahn BM, Lee J, Jang YJ. Improved skeletal muscle mass and strength through Protamex-mediated hydrolysis of perilla seed cake: Elevated rosmarinic acid levels as a contributing factor. Food Chem 2025; 463:141369. [PMID: 39326313 DOI: 10.1016/j.foodchem.2024.141369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Perilla seed cake (PSC) is a byproduct of oil extraction from perilla seeds. It is rich in proteins and bioactive compounds. PSC was enzymatically hydrolyzed to form PSC hydrolysate (PSCH) to enhance the absorption of PSC, and their effects on muscle health in mice were compared. High performance liquid chromatography-tandem mass spectrometry analysis revealed that PSC contains several polyphenols, including rosmarinic acid (RA), caffeic acid, apigenin, and luteolin. The hydrolysate showed 1.44- and 7.04-fold increases in RA and caffeic acid contents, respectively, compared to those of PSC. The intake of PSC, PSCH, and RA significantly improved muscle mass and exercise performance in mice by upregulating protein synthesis, myogenic differentiation, oxidative muscle fiber formation, fatty acid oxidation, and mitochondrial biogenesis; however, PSCH had better promoting effects than PSC. In conclusion, PSCH improves muscle health through its bioactive compounds (particularly RA), indicating the potential of PSCH and RA in functional foods.
Collapse
Affiliation(s)
- Eun Sol Hwang
- Department of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Yuran Noh
- Department of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Hyun Young Jeong
- Department of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Justin Jaesuk Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeong Min Ahn
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young Jin Jang
- Department of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea.
| |
Collapse
|
2
|
Wu D, Wu W, Zhang N, Soladoye OP, Aluko RE, Zhang Y, Fu Y. Tailoring soy protein/corn zein mixture by limited enzymatic hydrolysis to improve digestibility and functionality. Food Chem X 2024; 23:101550. [PMID: 39022785 PMCID: PMC11252778 DOI: 10.1016/j.fochx.2024.101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
This study aimed to modify plant protein mixture to improve their functionality and digestibility by limited hydrolysis. Soy protein isolate and corn zein were mixed at the ratio of 5:1 (w/w), followed by limited hydrolysis using papain from 15 to 30 min. The structural characteristics, in vitro digestibility, and functional properties were evaluated. Also, DPPH radical scavenging activity was determined. The results indicated that the molecular weight of different modified samples was largely reduced by limited hydrolysis, and the proportion of random coil was significantly increased. Furthermore, the solubility, foaming, emulsifying and water-holding capacity of hydrolyzed protein mixture were significantly improved, which were close to those of whey protein isolate. In vitro digestibility after 30-min limited hydrolysis was remarkably elevated. In addition, the hydrolyzed protein mixture exhibited a higher antioxidant activity than those of untreated proteins. Overall, limited hydrolysis of protein mixture led to improved digestibility, functionality and antioxidant activity.
Collapse
Affiliation(s)
- Dongjing Wu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Olugbenga P. Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
3
|
Li W, Zhou Q, Xu J, Zhu S, Lv S, Yu Z, Yang Y, Liu Y, Zhou Y, Sui X, Zhang Q, Xiao Y. Insight into the solubilization mechanism of wheat gluten by protease modification from conformational change and molecular interaction perspective. Food Chem 2024; 447:138992. [PMID: 38503066 DOI: 10.1016/j.foodchem.2024.138992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/29/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
The low solubility limits the utilization of other functional characteristics of wheat gluten (WG). This study effectively improved the solubility of WG through protease modification and explored the potential mechanism of protease modification to enhance the solubility of WG, further stimulating the potential application of WG in the food industry. Solubility of WG modified with alkaline protease, complex protease, and neutral protease was enhanced by 98.99%, 54.59%, and 51.68%, respectively. Notably, the content of β-sheet was reduced while the combined effect of hydrogen bond and ionic bond were increased after protease modification. Meanwhile, the reduced molecular size and viscoelasticity as well as the elevated surface hydrophobicity, thermostability, water absorption capacity, and crystallinity were observed in modified WG. Moreover, molecular docking indicated that protease was specifically bound to the amino acid residues of WG through hydrogen bonding, hydrophobic interaction, and salt bridge.
Collapse
Affiliation(s)
- Weixiao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jianxia Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shanlong Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Sixu Lv
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yin Yang
- Anhui Bi Lv Chun Biotechnology Co., Ltd., Chuzhou 239200, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qiang Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|