1
|
Wollmuth EM, Angert ER. Microbial circadian clocks: host-microbe interplay in diel cycles. BMC Microbiol 2023; 23:124. [PMID: 37161348 PMCID: PMC10173096 DOI: 10.1186/s12866-023-02839-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Circadian rhythms, observed across all domains of life, enable organisms to anticipate and prepare for diel changes in environmental conditions. In bacteria, a circadian clock mechanism has only been characterized in cyanobacteria to date. These clocks regulate cyclical patterns of gene expression and metabolism which contribute to the success of cyanobacteria in their natural environments. The potential impact of self-generated circadian rhythms in other bacterial and microbial populations has motivated extensive research to identify novel circadian clocks. MAIN TEXT Daily oscillations in microbial community composition and function have been observed in ocean ecosystems and in symbioses. These oscillations are influenced by abiotic factors such as light and the availability of nutrients. In the ocean ecosystems and in some marine symbioses, oscillations are largely controlled by light-dark cycles. In gut systems, the influx of nutrients after host feeding drastically alters the composition and function of the gut microbiota. Conversely, the gut microbiota can influence the host circadian rhythm by a variety of mechanisms including through interacting with the host immune system. The intricate and complex relationship between the microbiota and their host makes it challenging to disentangle host behaviors from bacterial circadian rhythms and clock mechanisms that might govern the daily oscillations observed in these microbial populations. CONCLUSIONS While the ability to anticipate the cyclical behaviors of their host would likely be enhanced by a self-sustained circadian rhythm, more evidence and further studies are needed to confirm whether host-associated heterotrophic bacteria possess such systems. In addition, the mechanisms by which heterotrophic bacteria might respond to diel cycles in environmental conditions has yet to be uncovered.
Collapse
Affiliation(s)
- Emily M Wollmuth
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Raven JA, Suggett DJ, Giordano M. Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. JOURNAL OF PHYCOLOGY 2020; 56:1377-1397. [PMID: 32654150 DOI: 10.1111/jpy.13050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic dinoflagellates are ecologically and biogeochemically important in marine and freshwater environments. However, surprisingly little is known of how this group acquires inorganic carbon or how these diverse processes evolved. Consequently, how CO2 availability ultimately influences the success of dinoflagellates over space and time remains poorly resolved compared to other microalgal groups. Here we review the evidence. Photosynthetic core dinoflagellates have a Form II RuBisCO (replaced by Form IB or Form ID in derived dinoflagellates). The in vitro kinetics of the Form II RuBisCO from dinoflagellates are largely unknown, but dinoflagellates with Form II (and other) RuBisCOs have inorganic carbon concentrating mechanisms (CCMs), as indicated by in vivo internal inorganic C accumulation and affinity for external inorganic C. However, the location of the membrane(s) at which the essential active transport component(s) of the CCM occur(s) is (are) unresolved; isolation and characterization of functionally competent chloroplasts would help in this respect. Endosymbiotic Symbiodiniaceae (in Foraminifera, Acantharia, Radiolaria, Ciliata, Porifera, Acoela, Cnidaria, and Mollusca) obtain inorganic C by transport from seawater through host tissue. In corals this transport apparently provides an inorganic C concentration around the photobiont that obviates the need for photobiont CCM. This is not the case for tridacnid bivalves, medusae, or, possibly, Foraminifera. Overcoming these long-standing knowledge gaps relies on technical advances (e.g., the in vitro kinetics of Form II RuBisCO) that can functionally track the fate of inorganic C forms.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Faculty of Science, University of Technology, Sydney, Climate Change Cluster, Ultimo, Sydney, New South Wales, 2007, Australia
- School of Biological Science, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - David J Suggett
- Faculty of Science, University of Technology, Sydney, Climate Change Cluster, Ultimo, Sydney, New South Wales, 2007, Australia
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Algatech, Trebon, Czech Republic
- National Research Council, Institute of Marine Science ISMAR, Venezia, Italy
| |
Collapse
|
3
|
Alves Monteiro HJ, Brahmi C, Mayfield AB, Vidal-Dupiol J, Lapeyre B, Le Luyer J. Molecular mechanisms of acclimation to long-term elevated temperature exposure in marine symbioses. GLOBAL CHANGE BIOLOGY 2020; 26:1271-1284. [PMID: 31692206 DOI: 10.1111/gcb.14907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching of corals and giant clams. Because giant clams possess distinctive ectosymbiotic features, they represent a unique and powerful model for comparing molecular pathways involved in (a) maintenance of symbiosis and (b) acquisition of thermotolerance among coral reef organisms. Herein, we explored the physiological and transcriptomic responses of the clam hosts and their photosynthetically active symbionts over a 65 day experiment in which clams were exposed to either normal or environmentally relevant elevated seawater temperatures. Additionally, we used metabarcoding data coupled with in situ sampling/survey data to explore the relative importance of holobiont adaptation (i.e., a symbiont community shift) versus acclimation (i.e., physiological changes at the molecular level) in the clams' responses to environmental change. We finally compared transcriptomic data to publicly available genomic datasets for Symbiodiniaceae dinoflagellates (both cultured and in hospite with the coral Pocillopora damicornis) to better tease apart the responses of both hosts and specific symbiont genotypes in this mutualistic association. Gene module preservation analysis revealed that the function of the symbionts' photosystem II was impaired at high temperature, and this response was also found across all holobionts and Symbiodiniaceae lineages examined. Similarly, epigenetic modulation appeared to be a key response mechanism for symbionts in hospite with giant clams exposed to high temperatures, and such modulation was able to distinguish thermotolerant from thermosensitive Cladocopium goreaui ecotypes; epigenetic processes may, then, represent a promising research avenue for those interested in coral reef conservation in this era of changing global climate.
Collapse
Affiliation(s)
| | - Chloé Brahmi
- Université de la Polynésie Française, UMR Ecosystèmes Insulaires Océaniens, Ifremer, ILM, IRD, Tahiti, Polynésie Française
| | - Anderson B Mayfield
- National Museum of Marine Biology and Aquarium, Checheng, Taiwan
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | | | - Bruno Lapeyre
- EPHE-CNRS-UPVD, USR3278-CRIOBE, Labex CORAIL, Moorea, Polynésie Française
| | - Jérémy Le Luyer
- IFREMER, UMR Ecosystèmes Insulaires Océaniens, UPF, ILM, IRD, Tahiti, Polynésie Française
| |
Collapse
|
4
|
Armstrong EJ, Roa JN, Stillman JH, Tresguerres M. Symbiont photosynthesis in giant clams is promoted by V-type H +-ATPase from host cells. ACTA ACUST UNITED AC 2018; 221:jeb.177220. [PMID: 30065035 DOI: 10.1242/jeb.177220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Giant clams (genus Tridacna) are the largest living bivalves and, like reef-building corals, host symbiotic dinoflagellate algae (Symbiodinium) that significantly contribute to their energy budget. In turn, Symbiodinium rely on the host to supply inorganic carbon (Ci) for photosynthesis. In corals, host 'proton pump' vacuolar-type H+-ATPase (VHA) is part of a carbon-concentrating mechanism (CCM) that promotes Symbiodinium photosynthesis. Here, we report that VHA in the small giant clam (Tridacna maxima) similarly promotes Symbiodinium photosynthesis. VHA was abundantly expressed in the apical membrane of epithelial cells of T. maxima's siphonal mantle tubule system, which harbors Symbiodinium Furthermore, application of the highly specific pharmacological VHA inhibitors bafilomycin A1 and concanamycin A significantly reduced photosynthetic O2 production by ∼40%. Together with our observation that exposure to light increased holobiont aerobic metabolism ∼5-fold, and earlier estimates that translocated fixed carbon exceeds metabolic demand, we conclude that VHA activity in the siphonal mantle confers strong energetic benefits to the host clam through increased supply of Ci to algal symbionts and subsequent photosynthetic activity. The convergent role of VHA in promoting Symbiodinium photosynthesis in the giant clam siphonal mantle tubule system and coral symbiosome suggests that VHA-driven CCM is a common exaptation in marine photosymbioses that deserves further investigation in other taxa.
Collapse
Affiliation(s)
- Eric J Armstrong
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA .,Estuary & Ocean Science Center and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA
| | - Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathon H Stillman
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.,Estuary & Ocean Science Center and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Melo Clavijo J, Donath A, Serôdio J, Christa G. Polymorphic adaptations in metazoans to establish and maintain photosymbioses. Biol Rev Camb Philos Soc 2018; 93:2006-2020. [PMID: 29808579 DOI: 10.1111/brv.12430] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
Mutualistic symbioses are common throughout the animal kingdom. Rather unusual is a form of symbiosis, photosymbiosis, where animals are symbiotic with photoautotrophic organisms. Photosymbiosis is found among sponges, cnidarians, flatworms, molluscs, ascidians and even some amphibians. Generally the animal host harbours a phototrophic partner, usually a cyanobacteria or a unicellular alga. An exception to this rule is found in some sea slugs, which only retain the chloroplasts of the algal food source and maintain them photosynthetically active in their own cytosol - a phenomenon called 'functional kleptoplasty'. Research has focused largely on the biodiversity of photosymbiotic species across a range of taxa. However, many questions with regard to the evolution of the ability to establish and maintain a photosymbiosis are still unanswered. To date, attempts to understand genome adaptations which could potentially lead to the evolution of photosymbioses have only been performed in cnidarians. This knowledge gap for other systems is mainly due to a lack of genetic information, both for non-symbiotic and symbiotic species. Considering non-photosymbiotic species is, however, important to understand the factors that make symbiotic species so unique. Herein we provide an overview of the diversity of photosymbioses across the animal kingdom and discuss potential scenarios for the evolution of this association in different lineages. We stress that the evolution of photosymbiosis is probably based on genome adaptations, which (i) lead to recognition of the symbiont to establish the symbiosis, and (ii) are needed to maintain the symbiosis. We hope to stimulate research involving sequencing the genomes of various key taxa to increase the genomic resources needed to understand the most fundamental question: how have animals evolved the ability to establish and maintain a photosymbiosis?
Collapse
Affiliation(s)
- Jenny Melo Clavijo
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany
| | - Alexander Donath
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany
| | - João Serôdio
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Campus Santiago, Aveiro, 3810-192, Portugal
| | - Gregor Christa
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany.,Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Campus Santiago, Aveiro, 3810-192, Portugal
| |
Collapse
|
6
|
Gula RL, Adams DK. Effects of Symbiodinium Colonization on Growth and Cell Proliferation in the Giant Clam Hippopus hippopus. THE BIOLOGICAL BULLETIN 2018; 234:130-138. [PMID: 29856670 DOI: 10.1086/698265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Giant clams (subfamily Tridacnidae) house their obligate symbionts, Symbiodinium sp., in a specialized tubular system. Rapid uptake of Symbiodinium has been shown to increase early clam survival, suggesting that symbionts play an essential role in host growth and development. To determine whether symbionts influence development in the giant clam Hippopus hippopus, we compared growth patterns and cell proliferation in two groups of clams inoculated or not inoculated (control) with Symbiodinium sp. Symbiont uptake occurred continuously from days 8 to 26 post-fertilization, with, on average, ∼5% per day colonized. The control treatment grew even without symbionts (1.03 ± 0.41 µm per day, standard error). Inoculated individuals grew significantly faster (2.91 ± 0.37 µm per day) than control individuals (P < 0.001). However, daily shell length measurements did not significantly differ between treatments until day 22, and ∼97% of control individuals metamorphosed by day 24, suggesting a delay in growth effects. Consistent with this, at day 13, clam cell proliferation was not correlated with symbiont abundance in inoculated individuals (P = 0.13), while at day 26, it was (P < 0.01). The proliferating cell pattern also changed from being randomly distributed (P = 0.99) at day 13 to non-randomly distributed (P = 0.002), with increased likelihood of proliferation within ∼25 µm of a symbiont, at day 26. Our results indicate that H. hippopus has a longer Symbiodinium acquisition period than previously recorded, after which proliferation and development are enhanced but during which growth is unaffected by Symbiodinium.
Collapse
|
7
|
Mies M, Sumida PYG, Rädecker N, Voolstra CR. Marine Invertebrate Larvae Associated with Symbiodinium: A Mutualism from the Start? Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Mies M, Voolstra CR, Castro CB, Pires DO, Calderon EN, Sumida PYG. Expression of a symbiosis-specific gene in Symbiodinium type A1 associated with coral, nudibranch and giant clam larvae. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170253. [PMID: 28573035 PMCID: PMC5451836 DOI: 10.1098/rsos.170253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Symbiodinium are responsible for the majority of primary production in coral reefs and found in a mutualistic symbiosis with multiple animal phyla. However, little is known about the molecular signals involved in the establishment of this symbiosis and whether it initiates during host larval development. To address this question, we monitored the expression of a putative symbiosis-specific gene (H+-ATPase) in Symbiodinium A1 ex hospite and in association with larvae of a scleractinian coral (Mussismilia hispida), a nudibranch (Berghia stephanieae) and a giant clam (Tridacna crocea). We acquired broodstock for each host, induced spawning and cultured the larvae. Symbiodinium cells were offered and larval samples taken for each host during the first 72 h after symbiont addition. In addition, control samples including free-living Symbiodinium and broodstock tissue containing symbionts for each host were collected. RNA extraction and RT-PCR were performed and amplified products cloned and sequenced. Our results show that H+-ATPase was expressed in Symbiodinium associated with coral and giant clam larvae, but not with nudibranch larvae, which digested the symbionts. Broodstock tissue for coral and giant clam also expressed H+-ATPase, but not the nudibranch tissue sample. Our results of the expression of H+-ATPase as a marker gene suggest that symbiosis between Symbiodinium and M. hispida and T. crocea is established during host larval development. Conversely, in the case of B. stephanieae larvae, evidence does not support a mutualistic relationship. Our study supports the utilization of H+-ATPase expression as a marker for assessing Symbiodinium-invertebrate relationships with applications for the differentiation of symbiotic and non-symbiotic associations. At the same time, insights from a single marker gene approach are limited and future studies should direct the identification of additional symbiosis-specific genes, ideally from both symbiont and host.
Collapse
Affiliation(s)
- M. Mies
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico 191, 05508-120 São Paulo, SP, Brazil
| | - C. R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia
| | - C. B. Castro
- Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, 20940-040 Rio de Janeiro, RJ, Brazil
- Instituto Coral Vivo, Rua dos Coqueiros, 87-45807-000 Santa Cruz Cabrália, BA, Brazil
| | - D. O. Pires
- Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, 20940-040 Rio de Janeiro, RJ, Brazil
- Instituto Coral Vivo, Rua dos Coqueiros, 87-45807-000 Santa Cruz Cabrália, BA, Brazil
| | - E. N. Calderon
- Instituto Coral Vivo, Rua dos Coqueiros, 87-45807-000 Santa Cruz Cabrália, BA, Brazil
- Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro, Av São José do Barreto, 764-27965-045 Macaé, RJ, Brazil
| | - P. Y. G. Sumida
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico 191, 05508-120 São Paulo, SP, Brazil
| |
Collapse
|