1
|
Eldesouky SE, Aseel DG, Elnouby MS, Galal FH, AL-Farga A, Hafez EE, Hussein HS. Synthesis of Tungsten Oxide, Iron Oxide, and Copper-Doped Iron Oxide Nanocomposites and Evaluation of Their Mixing Effects with Cyromazine against Spodoptera littoralis (Boisduval). ACS OMEGA 2023; 8:44867-44879. [PMID: 38046339 PMCID: PMC10688210 DOI: 10.1021/acsomega.3c06134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/05/2023]
Abstract
Nanotechnology research is emerging as a cutting-edge technology, and nanocomposites have played a significant role in pest control. Therefore, the present study focuses on the synthesis of tungsten oxide (WO3), iron oxide (magnetic nanoparticle, MNP), and copper-doped iron oxide (MNP-Cu) nanocomposites and explores the different effects of their binary combinations with the insecticide cyromazine against Spodoptera littoralis. The synthesized nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and Raman spectroscopy. None of the tested nanomaterials showed any toxicity against the different stages of S. littoralis. Larval and pupal durations increased with increasing cyromazine and nanomaterial concentrations. The longest larval and pupal durations were recorded under treatment with the mixture of cyromazine (100 mg/L) + MNP-Cu (500 mg/L); the survival periods were 23.5 and 15.6 days, compared with 10.8 and 7.7 days in the control, respectively. The percentages of pupation and adult emergence were negatively affected by all treatments. Among the 500 mg/L nanomaterial combinations, only cyromazine (25 mg/L) and WO3 (500 mg/L) resulted in adult emergence (at a rate of 27.3%). Some abnormalities in the S. littoralis stages were observed following treatment with the tested materials. The glutathione S-transferase and alpha-esterase enzyme activities in S. littoralis were significantly increased after treatment with cyromazine, followed by cyromazine/MNP-Cu combinations. The quantitative polymerase chain reaction (Q-PCR) data showed that all treated insects had a higher immune response than the control. Finally, mixes of nanocomposites and cyromazine may be suggested as viable alternatives for S. littoralis management.
Collapse
Affiliation(s)
- Sahar E. Eldesouky
- Cotton
Pesticides Evaluation Department, Plant
Protection Research Institute, Agricultural Research Center, El-Sabhia, Alexandria 21616, Egypt
| | - Dalia G. Aseel
- Plant
Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation
Research Institute (ALCRI), City of Scientific
Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Mohamed S. Elnouby
- Composite
and Nanostructured Materials Research Department, Advanced Technology
and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Fatma H. Galal
- Biology
Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry
Department, Faculty of Science, Jeddah University, Jeddah 21577, Saudi Arabia
| | - Elsayed E. Hafez
- Plant
Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation
Research Institute (ALCRI), City of Scientific
Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Hanaa S. Hussein
- Applied Entomology
and Zoology Department, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt
| |
Collapse
|
2
|
Wani SH, Vijayan R, Choudhary M, Kumar A, Zaid A, Singh V, Kumar P, Yasin JK. Nitrogen use efficiency (NUE): elucidated mechanisms, mapped genes and gene networks in maize ( Zea mays L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2875-2891. [PMID: 35035142 PMCID: PMC8720126 DOI: 10.1007/s12298-021-01113-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 05/22/2023]
Abstract
UNLABELLED Nitrogen, the vital primary plant growth nutrient at deficit soil conditions, drastically affects the growth and yield of a crop. Over the years, excess use of inorganic nitrogenous fertilizers resulted in pollution, eutrophication and thereby demanding the reduction in the use of chemical fertilizers. Being a C4 plant with fibrous root system and high NUE, maize can be deployed to be the best candidate for better N uptake and utilization in nitrogen deficient soils. The maize germplasm sources has enormous genetic variation for better nitrogen uptake contributing traits. Adoption of single cross maize hybrids as well as inherent property of high NUE has helped maize cultivars to achieve the highest growth rate among the cereals during last decade. Further, considering the high cost of nitrogenous fertilizers, adverse effects on soil health and environmental impact, maize improvement demands better utilization of existing genetic variation for NUE via introgression of novel allelic combinations in existing cultivars. Marker assisted breeding efforts need to be supplemented with introgression of genes/QTLs related to NUE in ruling varieties and thereby enhancing the overall productivity of maize in a sustainable manner. To achieve this, we need mapped genes and network of interacting genes and proteins to be elucidated. Identified genes may be used in screening ideal maize genotypes in terms of better physiological functionality exhibiting high NUE. Future genome editing may help in developing lines with increased productivity under low N conditions in an environment of optimum agronomic practices. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01113-z.
Collapse
Affiliation(s)
- Shabir H. Wani
- Genetics and Plant Breeding, Mountain Research Centre For Field Crops, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani Anantnag, J&K 192101 India
| | - Roshni Vijayan
- Regional Agricultural Research Station-Central Zone, Kerala Agricultural University, MelePattambi, Palakkad, Kerala 679306 India
| | | | - Anuj Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Vishal Singh
- Department of Plants, Soils and Climate, Utah State University, 4820 Old Main Hill, Logan, UT 84322 USA
| | - Pardeep Kumar
- ICAR-Indian Institute of Maize Research, Ludhiana, 141001 India
| | - Jeshima Khan Yasin
- Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA Campus, New Delhi, 110012 India
| |
Collapse
|
3
|
Karunarathne SD, Han Y, Zhang XQ, Dang VH, Angessa TT, Li C. Using chlorate as an analogue to nitrate to identify candidate genes for nitrogen use efficiency in barley. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:47. [PMID: 37309383 PMCID: PMC10236044 DOI: 10.1007/s11032-021-01239-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is one of the most important macronutrients for crop growth and development. Large amounts of N fertilizers are applied exogenously to improve grain yield and quality, which has led to environmental pollution and high cost of production. Therefore, improvement of N use efficiency (NUE) is a very important aspect for sustainable agriculture. Here, a pilot experiment was firstly conducted with a set of barley genotypes with confirmed NUE to validate the fast NUE screening, using chlorate as an analogue to nitrate. High NUE genotypes were susceptible to chlorate-induced toxicity whereas the low NUE genotypes were tolerant. A total of 180 barley RILs derived from four parents (Compass, GrangeR, Lockyer and La Trobe) were further screened for NUE. Leaf chlorosis induced by chlorate toxicity was the key parameter observed which was later related to low-N tolerance of the RILs. There was a distinct variation in chlorate susceptibility of the RILs with leaf chlorosis in the oldest leaf ranging from 10 to 80%. A genome-wide association study (GWAS) identified 9 significant marker-trait associations (MTAs) conferring high chlorate sensitivity on chromosomes 2H (2), 3H (1), 4H (4), 5H (1) and Un (1). Genes flanking with these markers were retrieved as potential targets for genetic improvement of NUE. Genes encoding Ferredoxin 3, leucine-rich receptor-like protein kinase family protein and receptor kinase are responsive to N stress. MTA4H5468 which exhibits concordance with high NUE phenotype can further be explored under different genetic backgrounds and successfully applied in marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01239-8.
Collapse
Affiliation(s)
- Sakura D. Karunarathne
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151 Australia
| | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Viet Hoang Dang
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Tefera Tolera Angessa
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151 Australia
| |
Collapse
|
4
|
Langholtz M, Davison BH, Jager HI, Eaton L, Baskaran LM, Davis M, Brandt CC. Increased nitrogen use efficiency in crop production can provide economic and environmental benefits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143602. [PMID: 33234272 DOI: 10.1016/j.scitotenv.2020.143602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 05/22/2023]
Abstract
Potential economic and environmental benefits of increasing nitrogen-use efficiency (NUE) are widely recognized but scarcely quantified. This study quantifies the effects of increased NUE on 1) the national agricultural economy using a simulation model of US agriculture and 2) regional water quality effects using a biogeochemical model for the Arkansas-White-Red river basin. National economic effects are reported for NUE improvement scenarios of 10%, 20%, 50%, and 100%, whereas regional water quality effects are estimated for a 20% NUE improvement scenario in the Arkansas-White-Red river basin. Simulating a 20% increase in NUE in row crops is shown to reduce N requirements by 1.4 million tonnes y-1 and increase farmer net profits by 1.6% ($743 million) per year by 2026 over the baseline simulation for the same period. For each 10% increase in NUE, annual farm revenues for commodity crops increased over the baseline by approximately $350 million per year by 2026. Changes in crop prices and land-use relative to the baseline were less than 2%. This suggests a net benefit even though fertilizer cost savings can result in increased cultivation of land, i.e., 'Jevon's paradox'. Results from the biogeochemical model of the Arkansas-White-Red river basin suggest that a 20% increase in NUE corresponds to a 5.72% reduction in nitrate loadings to freshwaters, with higher reductions in agricultural watersheds. The value of these reductions was estimated as $43 ha-1, for a total of $15.3 to 136.7 million yr-1 in avoided water treatment costs. After estimating the social value of increased NUE, we conclude with a discussion of potential strategies to increase efficiency and the research needed to achieve this goal. These include perennialization of the agricultural landscape, genetic crop improvement, targeted fertilizer application, and manipulation of the plant-root microbiome.
Collapse
Affiliation(s)
- Matthew Langholtz
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Brian H Davison
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Henriette I Jager
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Laurence Eaton
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Latha M Baskaran
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Maggie Davis
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Craig C Brandt
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|